Answers to almost all problems in Chapter 1 (22sep02)
1.1 irrational numbers
1.2 purely imaginary numbers
3 (a) {—2,1}; (b) {1}; (c) the odd integers; (d) —IR..
1.4 4

1.5 (a) On a seating chart, showing the two-dimensional arrangement of seats and, on each seat, I'd
write a student’s name, if any.

(b) domain: the students in class; range: the occupied seats in class; target: all available seats in class.
1.6 (i) no; (ii) yes; (iii) no; (iv) no; (v) yes; (vi) no.

1.7 (a) (0,0,0); (b) (0,1,0); (c) (0,0,1,0); (d) 0; (e) ; (f) same as (e).
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1.10 (a) RY3; (b) R>Y; (c) R (d) {[2,3]}: (o) {3} () [—1.. 125 <g>{[1 ' 1]}; (b) RV,

1.11 (a )maX(XR() X(t ))zliffXR()zlorxS()zliﬁteRorteSiﬁteRUS.

(b)mlan ) = 1iff x . ( lLand x (t) = 1ifft € Rand t € Siff t € RNS. Also,
XR(t)X —llffx t—landx (H)—l

(c) Xp\s = 1 — x4, while T\S =T N (T'\S); now use (b).

() RcSiffte R=te Siff x (t)=1= x () =11 x, < xg-

1.12 te fFHRUS)iff f(t) e Ror f(t)e Siffte f'Rorte f1Sifft € (f1R)U(f~1S. Etc.

1.13 If g were 1-1, then since, by definition of #Y, for m := #Y, there is f : m — Y onto, (1.2)Lemma
would imply that n < m, a contradiction to n > #Y.

1.14 If f were onto, then since, by definition of #Y, for n := #Y, there is g : n — Y 1-1, (1.2)Lemma
would imply that n < m, a contradiction to m < #Y.

1.15 (1.2)

1.16 By Problem 1.15, N is bounded since any 1-1 map into .S gives rise to a 1-1 map into T; also IV is
not empty since it contains 0 (as the empty map into T surely is 1-1). Hence, there is a largest n such that
some g :n — S is 1-1. If rang # S, then, for some s € S, the list (g(1),...,g9(n),s) is still 1-1 and into S,
contradicting the maximality of n. Hence g must be onto, and therefore #S5 = n.

1.17 If S =T, then certainly #S5 = #7T, and so #S < #T.

If S C T, then by Problem 1.16, the finiteness of T' implies the existence of n € INU{0} and of some 1-1
map g on n onto S. Taking this as a 1-1 map into 7', a previous homework permits us to extend this to a
1-1 map on some m onto T, with #5 = n < m = #T, and the added entries making up T\'S. In particular,
n =m if and only if T\S = {}, i.e,, S=T.

1.18 all yours

1.19 (a) yes, but neither 1-1 nor onto; (b) no; (c) yes, and onto but not 1-1; (d) yes, and 1-1 but not
onto.

1.20 (a) no; (b) yes, and 1-1 but not onto; (c) no; (d) no.

For R~! to be the graph of a map, R itself must be onto (if it is a map). Also, if R is 1-1 and onto,
then so is R~1.

1.21 (a) fg:3 — 3 with list (3,2,3); gf : 2 — 2 with list (1,2), i.e., the identity.

(b) ran(fg) = {2,3} and, for j = 2,3, we have, e.g., from (a), that (fg)(j) = j.

1.22 (a) list has 3 entries, hence dom is 3 = tar, hence map is identity, trivially invertible. (b) Now,
tar =4 # 3 = dom; map is 1-1 but not onto; list for a left inverse is (1,2,3,1). (c) dom = 3 # 2 = tar, map



is not 1-1, but onto; list for a right inverse is (1,2). (d) note that dh : R — R : y — d(h(y)) = d(y/2,0) =
2% (y/2) — 3 %0 = y is the identity, hence d is onto, with h as right inverse. But d is not 1-1 since it maps
all vectors (3*y,—2xy) : y € IR) to 0. (e) Notice that f rotates the plane 90 degrees counterclockwise,
hence invertible, with the inverse the rotation 90 degrees clockwise, i.e., f~' : R* — R? : z — (9, —x1).
Indeed, f(x2,—21) = (—(—x1),22) = z and f~}(—x9,71) = (21, —(—22) = z. (f) g is translation by the
vector (2, —3), hence translation by —(2, —3) is its inverse. (g) From (d), we know that d is a left inverse to
h; in particular, A is 1-1; it is obviously not onto, since everything in its range has 0 second component.

1.23 Already verified in (d) above that dh = id. hd : R? — IR? :  + h(2z; — 322) = (zbutnot —
(3/2)x2,0) maps IR? to the first axis in the plane, but leaves the axis itself fixed.

1.24 g,h have same domain and target. Also, for any s € S, f(g(s)) = (fg)(s) = (fh)(s) = f(h(s)),
while f is 1-1, therefore also g(s) = h(s).

1.25 f, g have the same domain and target. Also, for any ¢ € T, since h is onto, there is s € S with
t = h(s), hence f(t) = fh(s) = gh(s) = g(t).
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1.26 (a) 41 2 3 3 ,s0 f°= flie,d=4and f*=(1,2,3,4,4).
1 2 3 4 4
2 3 4 1 1
(b) (A)d=5, fA=1id. (B)d=6, f¢=1id. (C)d=1, f¢ =1id. (D) d =3, f*=(1,2,1,1,5). (E)
d=2, f*=(5,2,5,2,5). (F)d=1, f'=(2,52,2,5).
(c) f = id in case f is invertible.

1.27 [c, b] = sort(a); if any(c =(1:length(a))), fprintf(’The input doesn”t describe an invertible map’),
b = []; end

1.28 Since we know maps that have a right or a left inverse without being invertible, we know that
part of this problem is wrong, i.e., that g can be invertible without the f; being invertible.

On the other hand, if all the f; are invertible, then one verifies directly that f;!--- ffl(fl s fn) =
id=(fr fu)f' o i = id

1.29 Not necessarily; e.g., if #5 = 1, then there is exactly one g : T — S, and it is the unique left
inverse for every f : S — T, yet none is invertible unless #7° = 1. (However, the converse does hold if

#S5>1)

1.30 gf = idg by assumption, hence g is onto. If now also g is 1-1, then it is invertible, and then f,
being a right inverse for g, must be its inverse and, in particular, invertible, hence g, being a left inverse for
it, must be its unique left inverse.

If g fails to be 1-1, then, since the identity gf = idg forces it to be 1-1 on ran f, there must be some
s € S which, in addition to f(s), has some t € T\ran f as a pre-image under g. Since #S > 1, we can
obtain from g a different left inverse, g1, by having it coincide with g off ¢, and setting g;(¢) to some value
other than s.

1.31 Since fg = id; by assumption, g is 1-1. Hence if it is also onto, then g is invertible, and then
f, being a left inverse for it, must be its inverse, hence itself invertible and therefore has exactly one right
inverse, necessarily its inverse, g.

Assume that g is not onto, hence there is s € S\g(T). Since fg = idy, there is s € ¢(T') with
f(s1) = f(s). But now, constructing g; to agree with g off f(s) = f(s1), but taking the value s; # s at
f(s) = f(s1) makes also g; # g a right inverse for f.

1.32 Yes. If g is a right inverse for f, then fg = idy, hence f is onto. If now f is not invertible, then
it must fail to be 1-1, i.e., f(s1) = f(s2) for some s1 # s2, hence, with ¢; € T such that s; = g(t;), j = 1:2,
the equation fg = idy is unchanged if we change g to map ¢; to ss—;, hence the resulting different map is
also a right inverse for f.

1.33 (i) fg onto = f onto (for any g into X ). Conversely, since our g is onto, having f onto = fg



onto (as the composition of onto maps).

fg1-1 = f=(fg)g~"'is 1-1, while f 1-1 implies that fg is 1-1 (both times as the composition of 1-1
maps). Note that we have only used that g is invertible; the finiteness of X played no role so far.

(ii) Directly, i.e., without use of (i), if f: X — Y with n:= #X = #Y < oo, then there exist invertible
g:n— Xand h:n— Y. Ifnow f is 1-1(onto), then h™1 fg : n — n is 1-1(onto), hence, by (1.3), invertible,
and that makes f = h(h™1fg)g~! invertible, too.

1.34 (a)F; (b)T; (¢)T; (d)T; (e)T; (HF; (g)F; (b)T; (1)T; () T; (k)F; ()T; (m)F.



