
Answers to almost all problems in Chapter 1 (22sep02)
1.1 irrational numbers
1.2 purely imaginary numbers
1.3 (a) {−2, 1}; (b) {1}; (c) the odd integers; (d) −IR+.
1.4 4
1.5 (a) On a seating chart, showing the two-dimensional arrangement of seats and, on each seat, I’d

write a student’s name, if any.
(b) domain: the students in class; range: the occupied seats in class; target: all available seats in class.
1.6 (i) no; (ii) yes; (iii) no; (iv) no; (v) yes; (vi) no.

1.7 (a) (0, 0, 0); (b) (0, 1, 0); (c) (0, 0, 1, 0); (d) 0; (e)


 0 0 0 0

1 0 0 0
0 1 0 0


; (f) same as (e).

1.8 a major effort
1.9 A

1.10 (a) IR1×3; (b) IR2×1; (c) IR3×1; (d) {[2, 3]}; (e) {3}; (f) [−1 . . 1]2×3; (g) {
[

1 1 1
1 1 1

]
}; (h) IR1×3;

1.11 (a) max(χ
R
(t), χ

S
(t)) = 1 iff χ

R
(t) = 1 or χ

S
(t) = 1 iff t ∈ R or t ∈ S iff t ∈ R ∪ S.

(b) min(χ
R
(t), χ

S
(t)) = 1 iff χ

R
(t) = 1 and χ

S
(t) = 1 iff t ∈ R and t ∈ S iff t ∈ R ∩ S. Also,

χ
R
(t)χ

S
(t) = 1 iff χ

R
(t) = 1 and χ

S
(t) = 1.

(c) χ
T\S

= 1 − χ
S
, while T\S = T ∩ (T\S); now use (b).

(d) R ⊂ S iff t ∈ R =⇒ t ∈ S iff χ
R
(t) = 1 =⇒ χ

S
(t) = 1 iff χ

R
≤ χ

S
.

1.12 t ∈ f−1(R ∪ S) iff f(t) ∈ R or f(t) ∈ S iff t ∈ f−1R or t ∈ f−1S iff t ∈ (f−1R) ∪ (f−1S. Etc.
1.13 If g were 1-1, then since, by definition of #Y , for m := #Y , there is f : m → Y onto, (1.2)Lemma

would imply that n ≤ m, a contradiction to n > #Y .
1.14 If f were onto, then since, by definition of #Y , for n := #Y , there is g : n → Y 1-1, (1.2)Lemma

would imply that n ≤ m, a contradiction to m < #Y .
1.15 (1.2)
1.16 By Problem 1.15, N is bounded since any 1-1 map into S gives rise to a 1-1 map into T ; also N is

not empty since it contains 0 (as the empty map into T surely is 1-1). Hence, there is a largest n such that
some g : n → S is 1-1. If ran g 6= S, then, for some s ∈ S, the list (g(1), . . . , g(n), s) is still 1-1 and into S,
contradicting the maximality of n. Hence g must be onto, and therefore #S = n.

1.17 If S = T , then certainly #S = #T , and so #S ≤ #T .
If S ⊂ T , then by Problem 1.16, the finiteness of T implies the existence of n ∈ IN∪{0} and of some 1-1

map g on n onto S. Taking this as a 1-1 map into T , a previous homework permits us to extend this to a
1-1 map on some m onto T , with #S = n ≤ m = #T , and the added entries making up T\S. In particular,
n = m if and only if T\S = {}, i.e., S = T .

1.18 all yours
1.19 (a) yes, but neither 1-1 nor onto; (b) no; (c) yes, and onto but not 1-1; (d) yes, and 1-1 but not

onto.
1.20 (a) no; (b) yes, and 1-1 but not onto; (c) no; (d) no.
For R−1 to be the graph of a map, R itself must be onto (if it is a map). Also, if R is 1-1 and onto,

then so is R−1.
1.21 (a) fg : 3 → 3 with list (3, 2, 3); gf : 2 → 2 with list (1, 2), i.e., the identity.
(b) ran(fg) = {2, 3} and, for j = 2, 3, we have, e.g., from (a), that (fg)(j) = j.
1.22 (a) list has 3 entries, hence dom is 3 = tar, hence map is identity, trivially invertible. (b) Now,

tar = 4 6= 3 = dom; map is 1-1 but not onto; list for a left inverse is (1, 2, 3, 1). (c) dom = 3 6= 2 = tar, map
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is not 1-1, but onto; list for a right inverse is (1, 2). (d) note that dh : IR → IR : y 7→ d(h(y)) = d(y/2, 0) =
2 ∗ (y/2) − 3 ∗ 0 = y is the identity, hence d is onto, with h as right inverse. But d is not 1-1 since it maps
all vectors (3 ∗ y,−2 ∗ y) : y ∈ IR) to 0. (e) Notice that f rotates the plane 90 degrees counterclockwise,
hence invertible, with the inverse the rotation 90 degrees clockwise, i.e., f−1 : IR2 → IR2 : x 7→ (x2,−x1).
Indeed, f(x2,−x1) = (−(−x1), x2) = x and f−1(−x2, x1) = (x1,−(−x2) = x. (f) g is translation by the
vector (2,−3), hence translation by −(2,−3) is its inverse. (g) From (d), we know that d is a left inverse to
h; in particular, h is 1-1; it is obviously not onto, since everything in its range has 0 second component.

1.23 Already verified in (d) above that dh = id. hd : IR2 → IR2 : x 7→ h(2x1 − 3x2) = (xbutnot −
(3/2)x2, 0) maps IR2 to the first axis in the plane, but leaves the axis itself fixed.

1.24 g,h have same domain and target. Also, for any s ∈ S, f(g(s)) = (fg)(s) = (fh)(s) = f(h(s)),
while f is 1-1, therefore also g(s) = h(s).

1.25 f , g have the same domain and target. Also, for any t ∈ T , since h is onto, there is s ∈ S with
t = h(s), hence f(t) = fh(s) = gh(s) = g(t).

1.26 (a)




1 2 3 4 5
2 3 4 1 1
3 4 1 2 2
4 1 2 3 3
1 2 3 4 4
2 3 4 1 1




, so f5 = f1, i.e., d = 4 and fd = (1, 2, 3, 4, 4).

(b) (A) d = 5, fd = id. (B) d = 6, fd = id. (C) d = 1, fd = id. (D) d = 3, fd = (1, 2, 1, 1, 5). (E)
d = 2, fd = (5, 2, 5, 2, 5). (F) d = 1, fd = (2, 5, 2, 2, 5).

(c) fd = id in case f is invertible.
1.27 [c, b] = sort(a); if any(c =(1:length(a))), fprintf(’The input doesn”t describe an invertible map’),

b = []; end
1.28 Since we know maps that have a right or a left inverse without being invertible, we know that

part of this problem is wrong, i.e., that g can be invertible without the fi being invertible.
On the other hand, if all the fi are invertible, then one verifies directly that f−1

n · · · f−1
1 (f1 · · · fn) =

id = (f1 · · · fn)f−1
n · · · f−1

1 = id.
1.29 Not necessarily; e.g., if #S = 1, then there is exactly one g : T → S, and it is the unique left

inverse for every f : S → T , yet none is invertible unless #T = 1. (However, the converse does hold if
#S > 1.)

1.30 gf = idS by assumption, hence g is onto. If now also g is 1-1, then it is invertible, and then f ,
being a right inverse for g, must be its inverse and, in particular, invertible, hence g, being a left inverse for
it, must be its unique left inverse.

If g fails to be 1-1, then, since the identity gf = idS forces it to be 1-1 on ran f , there must be some
s ∈ S which, in addition to f(s), has some t ∈ T\ ran f as a pre-image under g. Since #S > 1, we can
obtain from g a different left inverse, g1, by having it coincide with g off t, and setting g1(t) to some value
other than s.

1.31 Since fg = idT by assumption, g is 1-1. Hence if it is also onto, then g is invertible, and then
f , being a left inverse for it, must be its inverse, hence itself invertible and therefore has exactly one right
inverse, necessarily its inverse, g.

Assume that g is not onto, hence there is s ∈ S\g(T ). Since fg = idT , there is s1 ∈ g(T ) with
f(s1) = f(s). But now, constructing g1 to agree with g off f(s) = f(s1), but taking the value s1 6= s at
f(s) = f(s1) makes also g1 6= g a right inverse for f .

1.32 Yes. If g is a right inverse for f , then fg = idT , hence f is onto. If now f is not invertible, then
it must fail to be 1-1, i.e., f(s1) = f(s2) for some s1 6= s2, hence, with tj ∈ T such that sj = g(tj), j = 1:2,
the equation fg = idT is unchanged if we change g to map tj to s3−j , hence the resulting different map is
also a right inverse for f .

1.33 (i) fg onto =⇒ f onto (for any g into X). Conversely, since our g is onto, having f onto =⇒ fg
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onto (as the composition of onto maps).
fg 1-1 =⇒ f = (fg)g−1 is 1-1, while f 1-1 implies that fg is 1-1 (both times as the composition of 1-1

maps). Note that we have only used that g is invertible; the finiteness of X played no role so far.
(ii) Directly, i.e., without use of (i), if f : X → Y with n := #X = #Y < ∞, then there exist invertible

g : n → X and h : n → Y . If now f is 1-1(onto), then h−1fg : n → n is 1-1(onto), hence, by (1.3), invertible,
and that makes f = h(h−1fg)g−1 invertible, too.

1.34 (a)F; (b)T; (c)T; (d)T; (e)T; (f)F; (g)F; (h)T; (i)T; (j)T; (k)F; (l)T; (m)F.
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