
Answers to all problems in chapter 10
10.1 (i) Many ways to handle this. E.g., notice that the first column of A is bound and the second is

free. Hence ranA = ranA(:, 1), therefore, in particular, (1) A must map A:1 = (1, 2) to a multiple of itself
and, indeed, A1,2 = (5, 10) = 5(1, 2); and (2) (2,−1) ∈ null A, hence an eigenvector for the eigenvalue 0.

So, A = V MV −1 with V =
[

1 2
2 −1

]
and M = diag(5, 0). Then V −1 =

[
1 −2
2 −1

]
/5.

(ii) exp(A) = V exp(diag(5, 0))V −1 = (
[

1
2

]
exp(5) [ 1 2 ]+

[
2
−1

]
exp(0) [ 2 −1 ])/5 =

[
E + 4 2E − 2
2E − 2 4E + 1

]
/5

with E := exp(5) = 148.4132, or
[

30.4826 58.9653
58.9653 118.9305

]
.

10.2 µ = 3: A − 3 id =


 1 1 −1

2 2 −2
1 1 −1


 and, by inspection, on first column is bound, hence rrref(A −

3 id) = [ 1 1 −1 ], therefore, by recipe, a basis for null(A − 3 id) is


−1 1

1 0
0 1


.

µ = 5: A − 5 id =


−1 1 −1

2 0 −2
1 1 −3


, leading to rrref(A− 5 id) =

[
1 0 −1
0 1 −2

]
, and the recipe for a basis

for null(A − 5 id) gives


 1

2
1


.

10.3 (a) [V, AV ] =


 0 2 2 8

3 1 13 7
1 1 5 5


 →


 0 2 2 8

0 −2 −2 −8
1 1 5 5


 from which we see that columns 3 and 4

are free, hence ran AV ⊂ ranV .

(b) Continuing one step further, we get the equivalent matrix


 0 0 0 0

0 1 1 4
1 0 4 1


 =: M [V, AV ] for some

invertible matrix M . This shows that M([3, 2], :)V = id2, hence M([3, 2], :) is a left inverse for V and so, in

particular C :=
[

4 1
1 4

]
= M([3, 2], :)AV is the sought-for matrix representation of B = A Y wrto the basis

V of Y .
Therefore, spec(B) = spec(C). Notice that C maps (1, 1) to (5, 5), and maps (1,−1) to (3,−3), hence

spec(B) = {5,−3}.
10.4 Since A is upper triangular, yet has only 0 on its diagonal, we know from (3.19)Proposition that

spec(A) = {0}. Also, since the first column is the only free one, null(A − 0 id) is 1-dimensional, and e1 is
obviously in it, hence [e1] is a basis for it, i.e., up to scalar multiples, it is the only eigenvector for A.

10.5 (i) Ax = µx implies (αA)x = α(Ax) = αµx. (ii)(A + α id)x = Ax + αx = (µ + α)x. (iii)
By induction on k since A0x = x = µ0x, if we already know for some k that Akx = µkx, then also
Ak+1x = A(Akx) = A(µkx) = µk+1x. (iv) A invertible implies that null(A) = {0}, hence µ 6= 0, while
x = A−1Ax = A−1(µx), hence A−1x = (1/µ)x. (v) With B′ either Bt or Bc, we know that rank B′ = rank B,
hence if B is also square, then also dim null B′ = dimnull B. In particular, since we know that null(A−µ id)
is not trivial, we also know that null(At − µ id) and null(Ac − µ id) are not trivial, hence, µ is an eigenvalue
for At and µ is an eigenvalue for Ac.

10.6 By diagonalizability, there is basis V for X consisting of eigenvectors for A, i.e., Avj = µjvj , all
j. #spec(A) = 1 says that all the µj are the same scalar, µ say. Hence AV = µV = (µ idX)V . Since V is a
basis, this shows that A = µ idX .

10.7 A = diag(1, 2, 3).
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10.8 (a) No (ranA∩null A = {0}∩null A = {0}); (b) No (ranA = ranA(:, 1) while null A = ran
[

2
−1

]
,

hence ranA ⊥ null A): (c) Yes ((−1, 2) is in both ranA and null A); (d) No (since 0 is not even an eigenvalue,
let alone a defective one).

10.9 Since X = ranP ⊕ null p, (4.26) implies that [U, W ] is a basis for X. Moreover, since P is a
linear projector, ranP = {x ∈ X : Px = x}, hence PU = U , while certainly PW = 0. Hence, [U, W ] is an
eigenbasis for P .

10.10 (i)using x = e1, we get [x, Ax, A2x] =
[

1 7 29
0 5 25

]
→

[
1 0 −6
0 1 5

]
, so p(t) = t2 − 5t + 6 =

(t − 3)(t − 2), giving µ = 3, with corresponding eigenvector q(A)x with q(t) = p(t)/(t − 3) = t − 2, i.e.,
A:1 − 2e1 = (5, 5). The other eigenvalue is µ = 2, with corresponding eigenvector A:1 − 3e1 = (4, 5).

(ii) With x = e3, get [x = e3, Ax = e2, A
2x = e1, A

3x = 0], hence the fourth column is the first free
one, with (0, 0, 0, 1) the corresponding element in the nullspace. Hence, the minimal polynomial for A at e3

is p(t) = t3, and it has only one zero, namely µ = 0, and q(t) := p(t)/(t − 0) = t2, hence the corresponding
eigenvector is A2e3 = unitv1.

(iii) With x = unitv1, we get B := [x, Ax, A2x, A3x] =


 1 −1 15 175

0 20 100 500
0 2 −30 −350


 →


 1 0 20 200

0 1 5 25
0 0 −40 −400


 →


 1 0 0 0

0 1 0 −25
0 0 1 10


, hence an element in the nullspace is (0, 25,−10, 1), giving the minimal polynomial at

x = e1 of p(t) = t3 − 10t2 + 25t = (t − 5)2t. For µ = 5, we get as eigenvector (A − 5)Ae1 = B(:, 3) − 5B(:
, 2) = (20, 0,−40), or, simpler, (1, 0,−2). For µ = 0, get the eigenvector (A− 5)2e1 = B:3 − 10B:2 + 25B:1 =
(50,−100,−50) or, simpler, (1,−2,−1).

10.11 (a) If Ax = µx, then we verified earlier that Akx = µkx for all k = 0, 1, 2, . . ., hence, with
p =: a0 +a1()1 + · · ·+ak()k, we have p(A)x = (a0 +a1µ+ · · ·+akµk)x = p(µ)x. Hence, if p(A) = 0, then, for
any µ ∈ spec(A) with corresponding eigenvector x, we have 0 = p(A)x = p(µ)x which implies p(µ) = 0 since
x 6= 0. (b) Then p(A) = 0 with p = ()2 − ()1 = ()1(()1 − 1), therefore spec(A) ⊂ {0, 1}. (c) Then p(A) = 0
for p = ()q, therefore spec(A) ⊂ {0}. (d) Since Dk+1 maps Πk to {0}, (c) implies that spec(A) ⊂ {h0},
while the fact that D()0 = 0 implies that 0 is an eigenvalue for D. Hence spec(D : Πk → Πk) = {0}.

10.12 (i) [e1, Ae1, A
2e1, . . .] = [e1, e2, 0, . . .] gives ()2 as the minimal polynomial. Since it is of degree 2

= order of A, its zero set is the spectrum; hence spec(A) = {0}.
(ii) [e1, Ae1, A

2e1, . . .] = [e1, e2, e3, e1, . . .], so the minimal polynomial at e1 is ()3 − 1. Since its degree
equals the order of A, its zeroset is the spectrum, hence spec(A) = {exp(j2πi) : j = 1:3}.

(iii) [e1, Ae1, . . .] = [e1, e2, e2, . . .], so the min.annil.pol. at e1 is ()2 − (), of degree equal to the order of
A, hence spec(()A) = {0, 1}.

(iv) [e1, Ae1, . . .] = [e1, e2, e1, . . .], so the min.annil.pol. at e1 is ()2 − 1, showing that {1,−1} ⊂ spec(A).
But, by inspection, Ae3 = 2e3, hence also 3 ∈ spec(A). Since A is of order 3, must have #spec(A) ≤ 3,
hence conclude that spec(A) = {−1, 1, 2}.

10.13 (i) If x ∈ null A ∩ null B, then Ax = 0 = Bx, hence also (A + B)x = 0.
(ii) If x ∈ null A + null B, then x = y + z with y null A and z ∈ null B. Hence ABx = AB(y + z) =

ABy + ABz = BAy + 0 = 0 + 0 = 0.
(iii) Let qj := pj/d, all j. By assumption, the qj have no common divisor, hence there exist hj so that∑

(hjqj) = 1 ???
10.14 Since Y is D-invariant, the restriction D Y of D to Y is a linear map on Y . Since Y is finite-

dimensional, D Y has a minimal annihilating polynomial, p say, and deg p ≤ dimY . This implies that
Y ⊂ null p(D), therefore, since dimnull p(D) = deg p, Y = null p(D).

It follows that Y is spanned by certain exponential polynomials, i.e., functions of the form t 7→
q(t) exp(ξt) for certain polynomials q and scalars ξ, the latter being the roots of p.

10.15 (a)T; (b)T; (c)F; (d)F; (e)T; (f)F; (g)T; (h)T; (i)T; (j)T; (k)F.
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