
Answers to (almost?) all problems in chapter 2 (30sep02)
2.1 (a) no: not closed under addition; (b) yes: nonempty and, since vector ops are pointwise, the

condition x1 = x2 is preserved under them, closed under addition and scalar mult.; (c) no: not closed under
mult. by negative scalar; (d) yes: the trivial subspace of IR3; (e) no: it’s empty; (f) yes: nonempty (e.g.,
contains 0 : [a . . b] → IR : t 7→ 0), and, since vector ops are pointwise, and lims→t(αf(s) + g(s)) exists and
equals α lims→t f(s) + lims→t g(s) when the latter two limits exist, C[a . . 2] is closed under vector ops. (g)
yes: nonempty (e.g., contains 0 ∈ IR3×3) and the vector ops are pointwise, hence preserve the condition that
certain entries are zero.

2.2 0x + 0x = (0 + 0)x = 0x by (s.2), hence 0x = 0 by (a.1) and (a.4). With that, x + (−1)x =
1x + (−1)x = (1 − 1)x = 0x = 0, by (s.4), (s.2), hence (−1)x must be −x by the uniqueness of the neutral
element (claimed but not proved after the Definition; for completeness: if also x + z = 0, then, by (a.1),
(a.2), (a.3), −x = −x + 0 = −x + (x + z) = (−x + x) + z = 0 + z = z).

2.3 Let (Yi : i ∈ I) be a collection of linear subspaces of the vector space X, and let Z := ∩i∈IYi be
their intersection.

Since any subspace contains 0, so does Z, hence Z 6= {}.
If x, y ∈ Z, then, for every for every every i ∈ I, x, y ∈ Yi, hence, for every for every α, β ∈ IF,

αx + βy ∈ Yi, therefore also in Z.
2.4 If one of them contains the other, then the union equals that one, hence is a linear subspace.
Conversely, if neither contains the other, then there is y ∈ Y \Z and z ∈ Z\Y . Now having y+z ∈ Y ∪Z

would imply, wlog, that y + z ∈ Y , hence also z = (y + z) − y ∈ Y , a contradiction. Hence, y + z fails to be
in Y ∪ Z, i.e., Y ∪ Z fails to be closed under addition.

2.5 Let Z be the linear subspace. Since a linear subspace is closed under the vector operations, they are,
in particular defined when restricted to that subspace, and all the conditions that require equality between
two expressions (i.e., (a.1-2) and (s.1-4)) continue to hold. This leaves

(a.3): Since Z is non-empty (by definition of linear subspace), there is z ∈ Z, hence also 0 = 0z must
be in Z (since Z is closed under multiplication by any scalar), and 0 continues to function as the neutral
element.

(a.4): If z ∈ Z, then also −z = (−1)z ∈ Z.
2.6 (a) not defined since the trivial polynomial has infinitely many zeros; in any case, IN is not a linear

space, nor is the map homogeneous nor is it additive.
(b) positive homogeneous, but not homogeneous nor additive.
(c) yes (special case of evaluation functional).
(d) yes (since vector operations on L(X, Y ) are defined pointwise).
(e)
(f) no (e.g., sin(αx) 6= α sin(x)).
2.7 Since each element of ran f is of the form f(x) for some x ∈ X, (2.5) shows that we can sum

arbitrary elements of ran f and multiply them by arbitrary scalars. With that, we can verify the eight
conditions in (2.1) by knowing them to hold in X and then using (2.5) to transfer them to ran f .

E.g., (α + β)f(x) = f((α + β)x) = f(αx + βx) = αf(x) + βf(x), with the first and last equality by
(2.5), and the second equality by (s.2) of (2.1), thus verifying (s.2) for ran f as well.

2.8 (i) Such rotation carries e1 to −e2 and e2 to e1; hence A = [−e2, e1].
(ii) The hyperplane contains ej for j < n, and these are all kept fixed, while reflecting en across this

hyperplane carries it to its negative; so, B = [e1, . . . , en−1,−en].
(iii) Same as (ii).
(iv) Keeping the y-axis fixed means, in particular, keeping e2 fixed, hence D = [?, e2]. The condition

(2, 1) = [?, e2](1, 1) =? + e2 implies that ? = 2e1, hence, D = [2e1, e2].
2.9 (i) A2 = [e1, 0][e1, 0] = [e1, 0] = A; AB = [e1, 0][0, e1] = [0, e1] = B; BA = [0, e1][e1, 0] = [0, 0] = 0;

B2 = 0.
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(ii) A2 = id2, AB = [e1,−e2] = −BA, B2 = − id2.
(iii) B = A2 = [e2, e3, e1][e2, e3, e1] = [e3, e1, e2]; BA = A3 = AB = [e2, e3, e1][e3, e1, e2] = [e1, e2, e3] =

id3; B2 = A4 = A3A = A.

2.10 (a)BA = A but AB makes no sense since tarB = IR2 6= IR3 = domA; (b)AAt =
[

21 9
9 5

]
, AtA =

 4 2 8
2 2 6
8 6 20


; (c)AB =


−2 0 15

0 2 5
0 0 −3


, BA =


−2 −2 −8

0 2 5
0 0 −3


 (d)AB =

[
16 − 7i 22 + 5i 5 + 4i
15 − 5i 21 + 7i 9 + 11i

]
, but

BA makes no sense since dom B = C2 6= C3 = tar A.
2.11 We are looking for matrices A and B of order 2 that don’t commute. E.g., A = [0e1] and

B = At = [e2, 0] give AB = [e1, 0] and BA = [0, e2].
2.12 Each should have a nontrivial range, and that range should like in the nullspace of the other.

Simplest: A = B = [0, e1].
2.13 This problem is messed up! Need also to assume that #C = #D, and only then can we form [C; D]

and sum AC and BD, and then get (AC + BD)ij = (AC)ij + (BD)ij =
∑#A

k=1 AikCkj +
∑#B

`=1 Bi`D`j =∑#A
k=1[A, B]ik[C; D]kj +

∑#B
`=1[A, B]i,#A+`[C; D]#A+`,j =

∑#[A,B]
k=1 [A, B]ik[C; D]kj = ([A, B][C; D])ij.

2.14 The linear map IR2 → C : a 7→ a1 + ia2 is 1-1 and onto, and C → IR2 : z 7→ (Re z, Im z) is its
inverse, hence linear; therefore, in particular, both Re and Im are linear.

2.15 (a) A =
[

2 −3
4 2

]
, y = (4,−6); (b) same as (a); (c) A =

[
0 0 −4
2 3 0

]
, y = (16, 9).

2.16 (a)


 2x1 − 3x2 = 9

6x1 − 4x2 = −√
3

ex1 −2x2 = 1


; (b)

[
x1 + 2x2 + 3x3 + 4x4 = 10
4x1 + 3x2 + 2x3 + x4 = 10

]
; (c)

2.17 Given that dom(AB) = dom(B) and tar(AB) = tar(B), the equality says that A and B have the
same domain and target. Since they are matrices, this makes them square.

2.18 ones(2)

2.19 A−1 = A/9

2.20 Let B :=
[

d −b
−c acr

]
. Then AB =

[
ad − bc 0

0 ad − bc

]
= BA. If ad = bc, then AB = 0, hence

either B = 0, but then also A = 0, or else null A ⊃ ranB 6= {0}, hence A is not 1-1. Either way, A is not
invertible. If ad 6= bc, then A(B/(ad − bc)) = id2 = (B/(ad − bc))A, hence A−1 = B/(ad − bc).

Since A is a square matrix, it invertibility already follows from having it 1-1 or onto, e.g., knowing that
AB = (ad − bc) id2 with ad 6= bc is already sufficient.

2.21 The target of this map is IR2×2, not IR2. With that correction, f(α(a + ib) + (c + id)) =[
(αa + c) −(αb + d)
αb + d αa + c

]
= α

[
a b
−b a

]
+

[
c d
−d c

]
= αf(a + ib) + f(c + id), proving linearity. With that,

the fact that f(z) = 0 implies that z = 0 shows that f is 1-1.
2.22 see, e.g., Problem 2.9(i).
2.23 Since the invertibility of AB implies that of both A and B in case they are square matrices,

the example must have nonsquare A, B, since such matrices are automatically not invertible. So, neither
A = [1, 0] nor B = At = [1; 0] is invertible, but AB = id1 is.

2.24 [A, B; 0, C][A−1,−A−1BC−1; 0, C−1] = [AA−1, A(−A−1BC−1)+BC−1; 0, CC−1] = [ id, 0; 0, id] =
id verifies that the second factor is a right inverse, hence the inverse since [A, B; 0, C] is square.

2.25 Since A is invertible, A+ yzt = A( id + (A−1y)zt) is invertible iff its right factor is and, by (2.19),
that factor is invertible iff α 6= 0, in which case

( id + A−1yzt)−1 = id − α−1A−1yzt,

and the formula follows by multiplying this from the right by A−1.
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2.26 generalize (2.19): ( id + CDt)( id + CEDt) = id + CEDt + CDt + CDtCEDt = id + C(E +
id + DtCE), hence if E = −( id + DtC)−1, then id + CEDt is a right inverse for id + CDt, hence
an inverse since id + CDt is a square matrix. Now apply this to the second factor in the factorization
(A + CDt) = A( id + A−1CDt).

2.27 (a)F (e.g., take B = −A); (b)F (e.g., A = B = [0, e1]); (c)T; (d)T (by induction on n); (e)T (then
0 = (AtA)ii =

∑
i(Aij)2, with Aij real); (f)F; (g)T; (h)T (it’s id3 + e2(e3)t); (i)T (y = ((2y − 3x) + 3x)/2).
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