
Answers to problems in chapter 3
3.1 since every column is either bound or free, sufficient to give just the bound columns or the free

columns. (a) no bound columns; (b) no free columns; (c) bound = (1, 3); (d) subtract 2 times second row

from first to find that bound = (1, 3); (
[

0 0 9 2
1 1 −2 2

]
, hence row 2 is pivot row for x1, row 1 is pivot row

for x3, and that uses up all the rows). (e) bound = (1, 2, 3); (row 3 is pivot row for x1, row 1 is pivot row for
x2, row 2 is pivot row for x3, and that uses up all the rows). (f) column 1 is the only bound one since it is
not 0 and all columns are scalar multiples of it.

3.2 (a) no:
[

1 −2 π
−1 2 1 − π

]
→

[
1 −2 π
0 0 1

]
(b) yes (for any y since A is invertible, by inspection);

the work:


 1 2 −1 0

2 3 −4 1
3 4 −8 0


 →


 1 2 −1 0

0 −1 −2 1
0 −2 −5 0


 →


 1 2 −1 0

0 −1 −2 1
0 0 −1 −2


, i.e., no pivot row left for y.

3.3 If x ∈ null A, then B(i, :) ∗ x = 0 for all rows of B except, perhaps, for the row from which we
subtracted a multiple from some (other) row. If this is the ith row, then B(i, :)∗x = (A(i, :)−αA(j, :))∗x =
A(i, :) ∗ x − αA(j, :) ∗ x = 0 − 0 = 0. Hence, altogether, Bx = 0, i.e., x null B.

The fact that, here, j 6= i becomes important only now since it implies that B(j, :) = A(j, :), hence we
can convert the ith row of B back to A(i, :) simply by subtracting −α times row j of B from row i of B.
Hence, A is indeed obtainable by exactly the same kind of process that produced B from A, therefore, by
the previous paragraph, also nullA ⊃ null B.

3.4 By (3.4)Observation, the free and bound unknowns for A? = 0 are completely determined by nullA,
while M being 1-1 implies that null(MA) = null A.

3.5 (a) []; (b) idn; (c) [e1, 0, e2, 0] ∈ IR2×4; (d)
[

1 1 0 22/9
0 0 1 2/9

]
; (e)


 1 0 0 11

0 1 0 1/2
0 0 1 3


; (f) [x]t.

3.6 A →
[

1 1
0 0

]
, hence rrref(A) = [ 1 1 ], f = (2), b = (1), so C(2, :) = (1), C(1, :) = (−1), i.e.,

C =
[−1

1

]
, hence null A = ranC = IRy, with y = (−1, 1). I.e., null A is the straight line through 0 and

(−1, 1). Since x := (1, 0) is a particular solution, the general solution is x + nullA, the straight line through
x and parallel to nullA.

3.7 (a) idn; (b) []; (c) [e2, e4] ∈ IR4×2; (d)



−1 −22/9
1 0
0 −2/9
0 1


; (e)




−11
−1/2
−3
1


 (f)



−2 −3 −4
1 0 0
0 1 0
0 0 1




3.8 MA(: bound) = (MA)(:, bound) = R(:, bound) = id.

3.9 (a) [] ∈ IRm×0; (b) A = idn; (c) A(:, [13]) = [e1, e2] ∈ IR2×2; (d) A(:, [13]) =
[

2 5
1 −2

]
; (e)

A(:, 1:3) =


 0 2 1

0 0 2
1 0 −3


; (f) [x].

3.10 (a) A; (b) x1 is the only free unknown; (c)C = [e1] ∈ IRn×1; A(:, 2:n).
3.11 (a) id3; (b) null M = null rref(M) = null id3 = {0}; (c) L := [e3, e2, e1, 0, 0, 0] ∈ IR3×6; (d) need to

map e1, e2, e3 ∈ IR6 to 0; so, P := [e4, e5, e6]t does the job, since x ∈ null P if and only if x4 = x5 = x6 = 0,
i.e., iff x ∈ ran[e1, e2, e3] = ranM .

3.12 (a) [e1, e2, e3, 0, 0, 0] ∈ IR3×6; (b) N(:, bound) = id, hence ranN = tarN ; (c) since N = M t, get
from previous (c) that NLt = (LM)t = idt = id.

3.13 Elimination applied to [U, V ] shows first two columns bound, the rest free, hence in ranU(:, 1:2),
so ran V ⊂ ranU(:, 1:2) ⊂ ranU . Elimination applied to [V, U ] shows the first two columns bound, the rest
free, hence ran U ⊂ ranV .
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If you know about the dimension of a vector space, then already the first calculation shows that 1 ≤
dim ran V ≤ dim ran U = 2, hence the second elimination calculation need only be done on V , to verify that
V is 1-1, and so conclude that ranV = ranU .

3.14 A :=


 2 −1 0

1 2 1
0 2 −1


 →


 0 −5 −2

1 2 1
0 2 −1


 →


 0 0 −4.5

1 2 1
0 2 −1


 shows that all unknowns are bound,

hence the matrix is 1-1, and all equations are used as pivot equation, hence the last unknown in [A, y] is free
for any choice of y, hence A is also onto.

3.15 Elimination:


 1 −2 3 1

2 k 6 6
−1 3 k − 3 0


 →


 1 −2 3 1

0 k + 4 0 4
0 1 k 1


 →


 1 −2 3 1

0 0 k(k + 4) k
0 1 k 1


.

(c) First and second columns are bound. The third column is bound iff k(k + 4) 6= 0, in which case the
last column is free, hence A? = y has exactly one solution then.

(a) Otherwise, when k = 0, then the second row is trivial, and the last two columns are free, hence
[A, y]? = 0 has infinitely many solutions.

(b) Otherwise, if k = 4, then the third column is free but the last column is bound, hence there’s no
solution at all.

3.16 (i) If both were right, then
[

1 2
3 5

]
would have a left inverse and a right inverse, yet these would

be different, and that can’t be.

(ii) We are given a left inverse V for the square matrix A :=
[

1 2
3 5

]
, hence know that V = A−1.

Writing e1 as a weighted sum of (1, 3), (2, 5) is precisely the task of writing e1 as Aa for some a, which is
the same as A−1e1 = a, therefore a is the first column of V , i.e., (−5, 3).

(iii) The second factor is 2-by-3, hence must have a nontrivial nullspace, hence the product must have
a nontrivial nullspace, hence cannot be the identity.

3.17 (a), (b) not square, hence not invertible;

(c)


 1 2 3

2 3 4
3 4 5


 →


 1 2 3

0 −1 −2
0 −2 −4


; elimination of second unknown will zero out the third row, hence

third column free, hence not invertible. (d) Matrix differs from (c) only in (3,3) entry, hence now all un-

knowns are bound and, since matrix is square, it is invertible. To compute:


 1 2 3 1 0 0

2 3 4 0 1 0
3 4 4 0 0 1


 →


 1 2 3 1 0 0

0 −1 −2 −2 1 0
0 −2 −4 −3 0 1


 →


 1 2 3 1 0 0

0 1 2 2 −1 0
0 0 −1 1 −2 1


 →


 1 2 0 4 −6 3

0 1 0 4 −5 2
0 0 1 −1 2 −1


 →


 1 0 0 −4 4 −1

0 1 0 4 −5 2
0 0 1 −1 2 −1




and the last three columns form A−1.

(e) A−1 =


 4 −5 2
−4 7 −3
1 −2 1


.

(f) This matrix is square, hence if it has a left inverse, then that must be its inverse. But, seeing what
the matrix does to the unit vectors, it’s easy to give a matrix that undoes the action, namely: leave e2 and e4

unchanged, subtract e4 from e3, and add the result to e1. In other words, A−1 = [e1 +e3−e4, e2, e3−e4, e4].
3.18 (a) Q : f 7→ (f(0), f(1), f(2)) and V = [()0, ()2, ()4] and want V a so that QV a = Λt()1 = (0, 1, 2).

Hence, augmented matrix


 1 0 0 0

1 1 1 1
1 4 16 2


 →


 1 0 0 0

0 1 1 1
0 0 12 −2


, hence a3 = −1/6, a2 = 1− (−1/6) = 7/6,

a1 = 0. So, desired element is p = (7()2 − ()4)/6 = (7 − ()2)()2/6. Check it: p(0) = 0, p(1) = 6/6 = 1,
p(2) = (3) ∗ 4/6 = 2.
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(b) Change to Q : f 7→ (f(0), f(1), f(−1)) changes augmented matrix to
 1 0 0 0

1 1 1 1
1 1 1 −1


 →


 0 −1 −1 −1

1 1 1 1
0 0 0 −1


, hence third column free, last column bound, hence no solution.

Could have predicted that since all columns of V are even functions, hence satisfy v(−1) = v(1), while
the function f = ()1 we are trying to match is odd, hence satisfies f(−1) = −f(1).

3.19 (a)T; (b)T; (c)F; (d)T; (e)F; (f)F; (g)T; (h)F; (i)T; (j)T.
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