Answers to some problems in chapter 4

- **4.1** A maps e_j to e_{j-1} for all j, with $e_0 := 0$, hence A^n maps all e_j to 0, i.e., $A^n = [A^n e_1, \ldots, A^n e_n] =$ $[0,\ldots,0]=0.$
- **4.2** Certainly, for any $\alpha \in \mathbb{F}$, $A, B \in L(X)$, $\alpha(AB) = A(\alpha B)$, while $\mathrm{id} A = A \mathrm{id}$, hence $\alpha \mathrm{id}$ commutes with every $B \in L(X)$.

Now assume that A commutes with every $B \in L(X)$. Let $V = [v_1, \ldots, v_n]$ be a basis for X, with inverse $\Lambda^{t} = [\lambda_1, \dots, \lambda_n]^{t}$. Then, for all i, j, $[Av_j] = A[v_j](\lambda_i v_i) = A([v_j]\lambda_i)v_i = ([v_j]\lambda_i)Av_i = [v_j](\lambda_i Av_i)$. In particular, $Av_i = \alpha_i v_j$ for some α_i , therefore $\lambda_i Av_i = \alpha_i$, and so, altogether, $\alpha_i = \alpha_i$. So, $AV = \alpha V$ (with $\alpha := \alpha_i$), and since V is a basis, this implies by (4.2) that $A = \alpha \operatorname{id}_X$.

- **4.3** (i) For each $y \in \mathbb{F}^m$, $x \mapsto y^t A x$ is the map $(y^t A)^t$, hence linear; for each $x \in X$, $y \mapsto y^t A x$ is the map $(Ax)^{t}$, hence linear.
- (ii) Let $A \in \mathbb{F}^{m \times n}$ be given by $A(i,j) := f(e_i,e_j)$. Then, using bilinearity, $f(y,x) = f(\sum_i y_i e_i, \sum_j x_j e_j) = f(y,x) = \sum_i \sum_j y_i x_j f(e_i,e_j) = y^{\mathrm{t}} A x$, i.e., $f = f_A$. If also $f = f_B$, then, in particular, $B(i,j) = f(e_i,e_j) = A(i,j)$ for all i,j, hence B = A.
- (iii) By (i) and (ii), $\mathbb{F}^{m \times n} \to BL(\mathbb{F}^m, \mathbb{F}^n) : A \mapsto f_A$ is well-defined, 1-1 and onto, hence invertible. Also, $y^{t}(\alpha A + B)x = \alpha y^{t}Ax + y^{t}Bx$ holds for all $A, B \in \mathbb{F}^{m \times n}$, $\alpha \in \mathbb{F}$, $(x, y) \in \mathbb{F}^{m} \times \mathbb{F}^{n}$, showing $A \mapsto f_{A}$ to be linear.
- 4.4 (a) try things like n=7; ab = rand(1,2); xy = rand(3,n); xx = linspace(0,1,101); $\max(abs(ab*[interp1(xy(1,:),xy(2,:),xx,'spline');$ interp1(xy(1,:),xy(3,:),xx,'spline')]- interp1(xy(1,:),ab*xy(2:3,:),xx,'spline'))) which should print out zero (except, perhaps, for round-off).
- (b) Let V denote the map, and let $\Lambda^t: f \mapsto f(x)$. Then the description assures us that $\Lambda^t V = \mathrm{id}$, hence V must be 1-1.
- (c) x = 0.3; yy = eye(4); xx = linspace(0,3,121); c = 'r', 'k', 'y', 'c'; for j=1.4; plot(xx,interp1(x,y))hold on, end hold off
- (d) the word 'spline' suggests that these functions might be piecewise cubic. Hence computing third differences (via diff(vals,3)) of function values vals = f(xx) at equally spaced points xx should produce a piecewise constant sequence; etc.

$$\textbf{4.6} \begin{bmatrix} 0 & 2 & 0 & 2 & 5 & 4 & 0 & 6 \\ 0 & 1 & 0 & 1 & 2 & 2 & 0 & 3 \\ 0 & 2 & 0 & 2 & 5 & 4 & -1 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 2 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 2 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}.$$
 Hence bound = $(2,5,7)$, i.e., $V = W(:,[2,5,7]) = \begin{bmatrix} 2 & 5 & 0 \\ 1 & 2 & 0 \\ 2 & 5 & -1 \end{bmatrix}.$

- **4.7** By definition, $X := \Pi_2(\mathbb{R}^2) = \operatorname{ran} V$ with $V := [()^{\alpha} : |\alpha| < 3] = [()^{0,0}, ()^{1,0}, ()^{0,1}, ()^{2,0}, ()^{1,1}, ()^{0,2}]$ having 6 columns. Hence sufficient to show that V is 1-1. For the 'data map' $\Lambda^{t}: p \mapsto (p(0), D_{1}p(0), D_{2}p(0), D_{1}^{2}p(0), D_{1}D_{2}p(0))$ we get $\Lambda^t V = \operatorname{diag}(1, 1, 1, 2, 1, 2)$, an invertible matrix. Hence V is 1-1.
- **4.8** Being of dimension n, the vector space has a basis $V = [v_1, \ldots, v_n]$. For each $j = 0:n, [v_1, \ldots, v_j]$ is 1-1, hence a basis for its range, hence that range is a subspace of dimension j.
- **4.9** (a),(b) Since DI = id, D is onto, hence ran $D = tar D = \prod_{k=1}^{n}$. Dimension Formula gives that dim null D = (k+1) - k = 1, and $D()^0 = 0$, hence null $D = ran[()^0]$. Also, I is 1-1, i.e., $ker I = \{0\}$, hence Dimension Formula gives that dim ran $I = \dim \operatorname{dom} I = k$. Also, $()^j \in \operatorname{ran} I$ for j > 0, and $[()^j : j > 0]$ is 1-1 (since it is contained in a basis) and has $k = \dim \operatorname{ran} I$ columns, therefore $\operatorname{ran} I = \operatorname{ran}[()^j : j > 0]$.
- (c) Ap = 0 implies Dp = -p hence $D^{k+1}p = (-1)^{k+1}p$ while, by (a), $D^{k+1}p = 0$ for any $p \in \Pi_k$. So, null $A = \{0\}$, hence A is 1-1, therefore, by Dimension Formula, A must be onto, i.e., ran $A = \Pi_k$.

4.10
$$V = V_4 A$$
, with $V_4 := [()^0, \dots, ()^4]$ 1-1, and $A := \begin{bmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & -3 & 0 \\ 0 & 0 & 1 & 0 & -8 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 8 \end{bmatrix}$ upper triangular with

nonzero diagonal entries, hence invertible by (3.19). Hence V is 1-1, with $5 = \dim \operatorname{tar} V$ columns, hence a basis for its target.

- **4.11** By (4.13), $0 \le \dim Y_0 < \dim Y_1 < \dots < \dim Y_r \le \dim X$.
- **4.12** If dim Y = k, then $Y = \operatorname{ran}[v_1] \dotplus \cdots \dotplus \operatorname{ran}[v_k]$ for every basis $[v_1, \dots, y_k]$ for Y and, by (i) and induction, $d(Y) = \sum_i \dim \operatorname{ran}[v_i]$, and this equals k by (ii). Hence, for any Y, $d(Y) = \dim Y$.
- **4.13** Let $B = A|_Z$; then $A(Z) = \operatorname{ran} B$ and $\operatorname{null} B = Z \cap \operatorname{null} A$, hence the Dimension Formula finishes the proof.
- **4.14** (a) Let V be a basis for null B; since null $B \subset \text{null}(AB)$, we may extend V to a basis [V, W] for null(AB). Then BW is a 1-1 column map into null A, hence $\#W \leq \text{defect}(A)$ and therefore $\text{defect}(AB) = \#V + \#W \leq \text{defect}(B) + \text{defect}(A)$.
- (b) Since $\operatorname{ran} AB \subset \operatorname{ran} A$, have $\operatorname{defect}(A) = \dim \operatorname{dom} A \dim \operatorname{ran} A \leq \dim \operatorname{dom} A \dim \operatorname{ran} AB = \dim \operatorname{dom} AB \dim \operatorname{ran} AB = \operatorname{defect}(AB)$, using the Dimension Formula twice.
- (c) By (b), we must make certain that $\dim \dim B \neq \dim \dim A$. However, for AB to be defined, we must have ran $B \subset \dim A$. So, how about $B = [] : \mathbb{R}^0 \to \mathbb{R}^1$ and $A : \mathbb{R}^1 \to \mathbb{R}^1 : x \mapsto 0$?
 - **4.15** If A = CB, then Bx = 0 implies Ax = CBx = 0, hence null $B \subset \text{null } A$.

For the converse, let [U, V] be a basis for X = dom A = dom B so that U is a basis for null B. Then BV is 1-1, hence extendible to a basis [BV, W] of Z. By (4.2), there is exactly one linear map $C: Z \to Y$ with CBV = AV, CW = 0. But then, CB[U, V] = [0, CBV] = [0, AV] = [AU, AV] = A[U, V], showing A and CB to agree on a basis for their common domain, and this implies that they are equal.

- **4.16** dim ran(AB) = dim ran B-dim $(\text{null } A \cap \text{ran } B)$, while dim ran(BC) = dim ran(ABC)+dim $(\text{null } A \cap \text{ran}(BC))$, and ran $(BC) \subset \text{ran } B$, hence also dim $(\text{null } A \cap \text{ran}(BC)) \leq \text{dim}(\text{null } A \cap \text{ran } B)$.
- **4.17** Since Y is a linear subspace, we have (x + Y) + (z + Y) = (x + z) + Y and, for any nonzero α , $\alpha(x + Y) = (\alpha x) + Y$, while 0(x + Y) = Y, by definition. Hence the map f is linear. Also, null $f = \{x \in X : x + Y = Y\} = Y Y = Y$.
 - (ii) By (i), X/Y is the range of the map f that satisfies (2.5), and (ii) follows from Problem 2.7.
- (iii) By (i) and the Dimension Formula, $\dim X/Y = \dim \operatorname{ran} f = \dim \operatorname{dom} f \dim \operatorname{null} f = \dim X \dim Y = \operatorname{codim} Y$.
- **4.18** Let $T := \{(i, j) \in \underline{n} \times \underline{n} : i \leq j\}$. Then the map $\mathbb{F}^{n \times n} \to \mathbb{F}^T : A \mapsto A|_T : (i, j) \mapsto A_{ij}$ is linear, and maps the subspace of all upper triangular matrices of order n 1-1 onto \mathbb{F}^T , hence that subspace has dimension dim $\mathbb{F}^T = \#T = (n+1)n/2$.
- **4.19** (i) By (4.7), any basis V for Y can be extended to a basis [V, W] for X, and, by (4.26), $X = Y + \operatorname{ran} W$, i.e., $\operatorname{ran} W$ is a complement for Y.
- (ii) If V is a basis for Y and W is a basis for Z, then, by (4.26), Z is a complement for Y iff [V, W] is a basis. In particular, dim $Z = \#W = \dim X \dim Y$, a number that depends on X and Y alone.
- (iii) From (ii), $\operatorname{codim} Y = \dim X \dim Y$, while, by the Dimension Formula, $\dim(Y + Z) = \dim Y + \dim Z \dim(Y \cap Z)$, so, on subtracting this equation from the identity $\dim X = \dim X + \dim X \dim X$, the proof is finished.
- (iv) If $X = Y \dotplus Z$ with both Y and Z proper, then there is a basis [V, W] for X, with V a basis for Y and W a basis for Z. If W is neither X nor $\{0\}$, then $V = [v_1, \ldots, v_r]$ for some r > 0 and $W = [w_1, \ldots, w_s]$ for some s > 0, and $w_1 + v_1 \notin Z$, therefore $Z_1 := \operatorname{ran}[w_1 + v_1, w_2, \ldots] \neq Z$, yet $[V, w_1 + v_1, w_2, \ldots, w_s]$ is 1-1 hence a basis for X and therefore also Z_1 is a complement for Y different from Z.
 - (v) By (ii), if $\operatorname{codim} Y > \dim Z$, then $\dim X > \dim Y + \dim Z \ge \dim(Y + Z)$.
- (vi) By (ii), if $\dim Y > \operatorname{codim} Z$, then $\dim Y + \dim Z > \dim X$, hence, by Dimension Formula, $\dim(Y \cap Z) > 0$.

4.20 If $\sum_j d_j = n$, then we can partition the n columns of any basis V for X into $V = [V_1, \dots, V_r]$ with $\#V_j = d_j$, and conclude from (4.26) that then $X = Y_1 \dotplus \dots \dotplus Y_r$, with $Y_j := \operatorname{ran} V_j$ of dimension $\#V_j = d_j$,

Conversely, if we have such a direct sum decomposition for X, then, by $(4.26), [V_1, \ldots, V_r]$ is a basis for X, hence $\sum_{i} d_{i} = \dim X = n$.

- **4.21** If dim Y = k, then $Y = \operatorname{ran}[v_1] \dot{+} \cdots \dot{+} \operatorname{ran}[v_k]$ for every basis $[v_1, \dots, y_k]$ for Y and, by (i) and induction, $d(Y) = \sum_{i} \dim \operatorname{ran}[v_i]$, and this equals k by (ii). Hence, for any Y, $d(Y) = \dim Y$.
- **4.22** Straightforward verification. E.g., $\alpha((y_1,\ldots,y_r)+(z_1,\ldots,z_r))=\alpha(y_1+z_1,\ldots,y_r+z_r)=(\alpha(y_1+z_1),\ldots,\alpha(y_r+z_r))=(\alpha y_1+\alpha z_1,\ldots,\alpha y_r+\alpha z_r)=(\alpha y_1,\ldots,\alpha y_r)+(\alpha z_1,\ldots,\alpha z_r)=\alpha(y_1,\ldots,y_r)+(\alpha z_1,\ldots,\alpha z_r)+(\alpha z_1,\ldots,\alpha z_r)+$ $\alpha(z_1,\ldots,z_r)$ verifies (s.3) of (2.1).
 - **4.23** Recall the basis $V_k := [()^0, \dots, ()^k]$ for Π_k .

(a)
$$V = V_3 A$$
, with $A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ 1-1 by inspection, hence V is 1-1, giving $\dim \operatorname{ran} V = \dim \operatorname{dom} V = 3 < 5 = \dim \operatorname{tar} V$, i.e., V is not onto.

$$(b) \ V = V_4 A, \text{ with } A = \begin{bmatrix} 0 & 2 & -1 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right to } 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-1 by inspection (e.g., thinking of elimination from right)} 1 \text{ 1-$$

left, row j is pivot row for column 6-j, all j), hence V is 1-1, $\dim \operatorname{ran} V = \dim \operatorname{dom} V = 4 < 5 = \dim \operatorname{tar} V$, i.e., V is not onto.

(c)
$$V = V_4 A$$
, with $A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$. Using the rows from last to second to eliminate unknowns,

we obtain the equivalent matrix $A \to B = \begin{bmatrix} 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$, and now we see that all columns of A are

bound, hence A is 1-1, therefore $\dim \operatorname{ran} V = \dim \operatorname{dom} V = 5 = \dim \operatorname{tar} V$, i.e., V is also onto.

4.24 (a) V maps into Π_2 , a 3-dimensional space, hence at most 3 columns can be bound. Since $V = [()^2, ()^1, ()^0] \begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & -2 & -4 & \cdots \\ 0 & 1 & 4 & \cdots \end{bmatrix}, \text{ and using the last row of this matrix as pivot row for the second}$

column gives the modified second row $[0 \ 0 \ 4 \ \cdots]$, this shows that the first three columns of V are bound, hence the others must be free. Therefore $[f_0, f_1, f_2]$ is a basis for ran V, and that smallest n is 3.

Alternative argument: since ran $V \subset \Pi_2$, have dim ran $V \leq \#[()^2, ()^1, ()^0] = 3$, while, with t = 0.2, have $[f_0(t), f_1(t), f_2(t)] = [t^2, (t-1)^2, (t-2)^2] = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 0 & 1 \\ 4 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 4 \\ 1 & 0 & 1 \\ 0 & 1 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 8 \\ 1 & 0 & 1 \\ 0 & 1 & -4 \end{bmatrix}$, showing all three columns to be bound, hence $[f_0, f_1, f_2]$ must be 1-1, therefore a basis for ran V, hence the other

columns of V must be free. In particular, n=2.

- (b) $V = [\sin, \cos] \begin{bmatrix} 1 & \cos(1) & \cdots \\ 0 & \sin(1) & \cdots \end{bmatrix}$, hence first two columns of matrix are bound, the others must be free. Since $[\sin, \cos]$ is 1-1 (e.g., $[\delta_{\pi/2}\delta_0]^t[\sin, \cos] = \mathrm{id}_2$) also the first 2 columns of V are bound and the rest
 - (c) $V = [\exp][1, \ldots]$, hence the first column of V is bound and the others are free, i.e., [exp] is a basis

for ran V. So, n = 1.

4.25 Each w_j is the product of k linear factors, hence of exact degree k, therefore W maps into Π_k . Also, $\#W = k + 1 = \dim \Pi_k$. Hence, W is a basis for Π_k if and only if W is 1-1.

The matrix $QW = (w_j(\tau_{k+1+i}) : i, j = 0:k)$ is upper triangular with nonzero diagonal entries, hence invertible by (3.19)Proposition, therefore W must be 1-1.

4.26 Each w_j is the product of k linear factors, hence of exact degree k, hence W maps into Π_k . Also, $\#W = k + 1 = \dim \Pi_k$. Hence, W is a basis for Π_k if and only if W is 1-1.

Let $Q: p \mapsto (D^{n_j} p(\tau_j): j = 1:k+1)$, with $n_j := \max\{i \leq k+1: \tau_i = \tau_j\} - j$, all j. Then $QW = \sum_{i=1}^{n_j} p(\tau_i) = \sum_{i=1}^{n_j} p(\tau_i)$

$$\begin{bmatrix} 0 & \times & & & \\ 0 & 0 & \times & & \\ \vdots & \vdots & \vdots & \ddots & \\ 0 & 0 & 0 & \cdots & \times \\ \times & 0 & 0 & \cdots & 0 \end{bmatrix}, \text{ with } \times \text{ indicating elements that are guaranteed to be nonzero in case } \tau_k < \tau_{k+1}$$

since each is the value of the n_j th derivative at τ_j of a polynomial that has a root of exact order n_j at τ_j . Hence, in that case every column of the square matrix QW is bound. This makes QW invertible, hence W is 1-1. If, on the other hand, $\tau_k = \tau_{k+1}$, then \times in the lower left corner becomes zero since it is $w_0(\tau_{k+1})$, hence then $w_j(\tau_{k+1}) = 0$ for every j = 0:k, therefore every $p \in \operatorname{ran} W$ vanishes at τ_{k+1} , hence $\operatorname{ran} W$ cannot be Π_k .

4.27 (a)T; (b)T; (c)F; (d)F.