
Answers to some problems in chapter 4
4.1 A maps ej to ej−1 for all j, with e0 := 0, hence An maps all ej to 0, i.e., An = [Ane1, . . . , A

nen] =
[0, . . . , 0] = 0.

4.2 Certainly, for any α ∈ IF, A, B ∈ L(X), α(AB) = A(αB), while idA = A id, hence α id commutes
with every B ∈ L(X).

Now assume that A commutes with every B ∈ L(X). Let V = [v1, . . . , vn] be a basis for X, with inverse
Λt = [λ1, . . . , λn]t. Then, for all i, j, [Avj ] = A[vj ](λivi) = A([vj ]λi)vi = ([vj ]λi)Avi = [vj ](λiAvi). In
particular, Avj = αjvj for some αj , therefore λiAvi = αi, and so, altogether, αj = αi. So, AV = αV (with
α := αj), and since V is a basis, this implies by (4.2) that A = α idX .

4.3 (i) For each y ∈ IFm, x 7→ ytAx is the map (ytA)t, hence linear; for each x ∈ X, y 7→ ytAx is the
map (Ax)t, hence linear.

(ii) Let A ∈ IFm×n be given by A(i, j) := f(ei, ej). Then, using bilinearity, f(y, x) = f(
∑

i yiei,
∑

j xjej) =
f(y, x) =

∑
i

∑
j yixjf(ei, ej) = ytAx, i.e., f = fA. If also f = fB , then, in particular, B(i, j) = f(ei, ej) =

A(i, j) for all i, j, hence B = A.
(iii) By (i) and (ii), IFm×n → BL(IFm, IFn) : A 7→ fA is well-defined, 1-1 and onto, hence invertible.

Also, yt(αA + B)x = αytAx + ytBx holds for all A, B ∈ IFm×n, α ∈ IF, (x, y) ∈ IFm × IFn, showing A 7→ fA

to be linear.
4.4 (a) try things like n=7; ab = rand(1,2); xy = rand(3,n); xx = linspace(0,1,101);

max(abs(ab*[interp1(xy(1,:),xy(2,:),xx,’spline’);
interp1(xy(1,:),xy(3,:),xx,’spline’)]- interp1(xy(1,:),ab*xy(2:3,:),xx,’spline’)))
which should print out zero (except, perhaps, for round-off).

(b) Let V denote the map, and let Λt : f 7→ f(x). Then the description assures us that ΛtV = id,
hence V must be 1-1.

(c) x = 0:3; yy = eye(4); xx = linspace(0,3,121);c = ’r’,’k’,’y’,’c’; for j=1:4; plot(xx,interp1(x,yy
hold on, end hold off

(d) the word ‘spline’ suggests that these functions might be piecewise cubic. Hence computing third
differences (via diff(vals,3)) of function values vals = f(xx) at equally spaced points xx should produce
a piecewise constant sequence; etc.

4.5 Apply (3.2) to W ; the bound columns constitute a basis for ranW .

4.6


 0 2 0 2 5 4 0 6

0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7


 →


 0 0 0 0 1 0 0 0

0 1 0 1 2 2 0 3
0 0 0 0 1 0 −1 1


 →


 0 0 0 0 1 0 0 0

0 1 0 1 2 2 0 3
0 0 0 0 0 0 −1 1


.

Hence bound = (2, 5, 7), i.e., V = W (:, [2, 5, 7]) =


 2 5 0

1 2 0
2 5 −1


.

4.7 By definition, X := Π2(IR2) = ranV with V := [()α : |α| < 3] = [()0,0, ()1,0, ()0,1, ()2,0, ()1,1, ()0,2]
having 6 columns. Hence sufficient to show that V is 1-1. For the ‘data map’ Λt : p 7→ (p(0), D1p(0), D2p(0), D2

1p(0), D1D2p(0),
we get ΛtV = diag(1, 1, 1, 2, 1, 2), an invertible matrix. Hence V is 1-1.

4.8 Being of dimension n, the vector space has a basis V = [v1, . . . , vn]. For each j = 0:n, [v1, . . . , vj ]
is 1-1, hence a basis for its range, hence that range is a subspace of dimension j.

4.9 (a),(b) Since DI = id, D is onto, hence ran D = tarD = Πk−1. Dimension Formula gives that
dimnull D = (k + 1) − k = 1, and D()0 = 0, hence null D = ran[()0]. Also, I is 1-1, i.e., ker I = {0}, hence
Dimension Formula gives that dim ran I = dim dom I = k. Also, ()j ∈ ran I for j > 0, and [()j : j > 0] is 1-1
(since it is contained in a basis) and has k = dim ran I columns, therefore ran I = ran[()j : j > 0].

(c) Ap = 0 implies Dp = −p hence Dk+1p = (−1)k+1p while, by (a), Dk+1p = 0 for any p ∈ Πk. So,
null A = {0}, hence A is 1-1, therefore, by Dimension Formula, A must be onto, i.e., ranA = Πk.
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4.10 V = V4A, with V4 := [()0, . . . , ()4] 1-1, and A :=




1 0 −1 0 1
0 1 0 −3 0
0 0 1 0 −8
0 0 0 4 0
0 0 0 0 8


 upper triangular with

nonzero diagonal entries, hence invertible by (3.19). Hence V is 1-1, with 5 = dim tar V columns, hence a
basis for its target.

4.11 By (4.13), 0 ≤ dim Y0 < dimY1 < · · · < dimYr ≤ dimX.
4.12 If dim Y = k, then Y = ran[v1] +̇ · · · +̇ ran[vk] for every basis [v1, . . . , yk] for Y and, by (i) and

induction, d(Y ) =
∑

j dim ran[vj ], and this equals k by (ii). Hence, for any Y , d(Y ) = dimY .
4.13 Let B = A Z ; then A(Z) = ranB and null B = Z ∩ null A, hence the Dimension Formula finishes

the proof.
4.14 (a) Let V be a basis for null B; since null B ⊂ null(AB), we may extend V to a basis [V, W ] for

null(AB). Then BW is a 1-1 column map into nullA, hence #W ≤ defect(A) and therefore defect(AB) =
#V + #W ≤ defect(B) + defect(A).

(b) Since ranAB ⊂ ranA, have defect(A) = dim domA − dim ran A ≤ dimdom A − dim ran AB =
dimdom AB − dim ran AB = defect(AB), using the Dimension Formula twice.

(c) By (b), we must make certain that dimdom B 6= dimdomA. However, for AB to be defined, we
must have ranB ⊂ dom A. So, how about B = [] : IR0 → IR1 and A : IR1 → IR1 : x 7→ 0?

4.15 If A = CB, then Bx = 0 implies Ax = CBx = 0, hence null B ⊂ null A.
For the converse, let [U, V ] be a basis for X = domA = dom B so that U is a basis for null B. Then

BV is 1-1, hence extendible to a basis [BV, W ] of Z. By (4.2), there is exactly one linear map C : Z → Y
with CBV = AV , CW = 0. But then, CB[U, V ] = [0, CBV ] = [0, AV ] = [AU, AV ] = A[U, V ], showing A
and CB to agree on a basis for their common domain, and this implies that they are equal.

4.16 dim ran(AB) = dim ran B−dim(null A∩ranB), while dim ran(BC) = dim ran(ABC)+dim(nullA∩
ran(BC)), and ran(BC) ⊂ ranB, hence also dim(nullA ∩ ran(BC)) ≤ dim(nullA ∩ ranB).

4.17 Since Y is a linear subspace, we have (x + Y ) + (z + Y ) = (x + z) + Y and, for any nonzero α,
α(x + Y ) = (αx) + Y , while 0(x + Y ) = Y , by definition. Hence the map f is linear. Also, null f = {x ∈ X :
x + Y = Y } = Y − Y = Y .

(ii) By (i), X/Y is the range of the map f that satisfies (2.5), and (ii) follows from Problem 2.7.
(iii) By (i) and the Dimension Formula, dimX/Y = dim ran f = dimdom f − dimnull f = dim X −

dimY = codimY .
4.18 Let T := {(i, j) ∈ n × n : i ≤ j}. Then the map IFn×n → IFT : A 7→ A T : (i, j) 7→ Aij is linear,

and maps the subspace of all upper triangular matrices of order n 1-1 onto IFT , hence that subspace has
dimension dim IFT = #T = (n + 1)n/2.

4.19 (i) By (4.7), any basis V for Y can be extended to a basis [V, W ] for X, and, by (4.26), X =
Y +̇ ranW , i.e., ranW is a complement for Y .

(ii) If V is a basis for Y and W is a basis for Z, then, by (4.26), Z is a complement for Y iff [V, W ] is a
basis. In particular, dim Z = #W = dim X − dim Y , a number that depends on X and Y alone.

(iii) From (ii), codimY = dimX − dim Y , while, by the Dimension Formula, dim(Y + Z) = dimY +
dimZ − dim(Y ∩ Z), so, on subtracting this equation from the identity dimX = dim X + dimX − dimX,
the proof is finished.

(iv) If X = Y +̇ Z with both Y and Z proper, then there is a basis [V, W ] for X, with V a basis for Y
and W a basis for Z. If W is neither X nor {0}, then V = [v1, . . . , vr] for some r > 0 and W = [w1, . . . , ws]
for some s > 0, and w1 + v1 6∈ Z, therefore Z1 := ran[w1 + v1, w2, . . .] 6= Z, yet [V, w1 + v1, w2, . . . , ws] is 1-1
hence a basis for X and therefore also Z1 is a complement for Y different from Z.

(v) By (ii), if codim Y > dim Z, then dimX > dim Y + dimZ ≥ dim(Y + Z).
(vi) By (ii), if dimY > codimZ, then dim Y + dimZ > dimX, hence, by Dimension Formula, dim(Y ∩

Z) > 0.
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4.20 If
∑

j dj = n, then we can partition the n columns of any basis V for X into V = [V1, . . . , Vr] with
#Vj = dj , and conclude from (4.26) that then X = Y1 +̇ · · · +̇ Yr, with Yj := ranVj of dimension #Vj = dj ,
all j.

Conversely, if we have such a direct sum decomposition for X, then, by (4.26), [V1, . . . , Vr] is a basis for
X, hence

∑
j dj = dimX = n.

4.21 If dim Y = k, then Y = ran[v1] +̇ · · · +̇ ran[vk] for every basis [v1, . . . , yk] for Y and, by (i) and
induction, d(Y ) =

∑
j dim ran[vj ], and this equals k by (ii). Hence, for any Y , d(Y ) = dimY .

4.22 Straightforward verification. E.g., α((y1, . . . , yr) + (z1, . . . , zr)) = α(y1 + z1, . . . , yr + zr) =
(α(y1 + z1), . . . , α(yr + zr)) = (αy1 +αz1, . . . , αyr +αzr) = (αy1, . . . , αyr)+ (αz1, . . . , αzr) = α(y1, . . . , yr)+
α(z1, . . . , zr) verifies (s.3) of (2.1).

4.23 Recall the basis Vk := [()0, . . . , ()k] for Πk.

(a) V = V3A, with A =




1 1 −1
−1 2 1
0 1 0
1 0 0


 1-1 by inspection, hence V is 1-1, giving dim ran V =

dimdom V = 3 < 5 = dim tarV , i.e., V is not onto.

(b) V = V4A, with A =




0 2 −1 1
−1 0 1 1
0 0 1 0
0 1 0 0
1 0 0 0


 1-1 by inspection (e.g., thinking of elimination from right to

left, row j is pivot row for column 6− j, all j), hence V is 1-1, dim ran V = dimdomV = 4 < 5 = dim tarV ,
i.e., V is not onto.

(c) V = V4A, with A =




1 0 0 0 1
0 0 0 1 1
0 0 1 1 0
0 1 1 0 0
1 1 0 0 0


. Using the rows from last to second to eliminate unknowns,

we obtain the equivalent matrix A → B =




0 0 0 0 2
0 0 0 1 1
0 0 1 1 0
0 1 1 0 0
1 1 0 0 0


, and now we see that all columns of A are

bound, hence A is 1-1, therefore dim ranV = dimdom V = 5 = dim tarV , i.e., V is also onto.
4.24 (a) V maps into Π2, a 3-dimensional space, hence at most 3 columns can be bound. Since

V = [()2, ()1, ()0]


 1 1 1 · · ·

0 −2 −4 · · ·
0 1 4 · · ·


, and using the last row of this matrix as pivot row for the second

column gives the modified second row [ 0 0 4 · · · ], this shows that the first three columns of V are
bound, hence the others must be free. Therefore [f0, f1, f2] is a basis for ran V , and that smallest n is 3.

Alternative argument: since ranV ⊂ Π2, have dim ran V ≤ #[()2, ()1, ()0] = 3, while, with t = 0:2,

have [f0(t), f1(t), f2(t)] = [ t2, (t − 1)2, (t − 2)2 ] =


 0 1 4

1 0 1
4 1 0


 →


 0 1 4

1 0 1
0 1 −4


 →


 0 0 8

1 0 1
0 1 −4


, showing

all three columns to be bound, hence [f0, f1, f2] must be 1-1, therefore a basis for ranV , hence the other
columns of V must be free. In particular, n = 2.

(b) V = [sin, cos]
[

1 cos(1) · · ·
0 sin(1) · · ·

]
, hence first two columns of matrix are bound, the others must be

free. Since [sin, cos] is 1-1 (e.g., [δπ/2δ0]t[sin, cos] = id2) also the first 2 columns of V are bound and the rest
are free.

(c) V = [exp][1, . . .], hence the first column of V is bound and the others are free, i.e., [exp] is a basis
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for ran V . So, n = 1.
4.25 Each wj is the product of k linear factors, hence of exact degree k, therefore W maps into Πk.

Also, #W = k + 1 = dim Πk. Hence, W is a basis for Πk if and only if W is 1-1.
The matrix QW = (wj(τk+1+i) : i, j = 0:k) is upper triangular with nonzero diagonal entries, hence

invertible by (3.19)Proposition, therefore W must be 1-1.
4.26 Each wj is the product of k linear factors, hence of exact degree k, hence W maps into Πk. Also,

#W = k + 1 = dimΠk. Hence, W is a basis for Πk if and only if W is 1-1.
Let Q : p 7→ (Dnj p(τj) : j = 1:k + 1), with nj := max{i ≤ k + 1 : τi = τj} − j, all j. Then QW =



0 ×
0 0 ×
...

...
...

. . .
0 0 0 · · · ×
× 0 0 · · · 0


, with × indicating elements that are guaranteed to be nonzero in case τk < τk+1

since each is the value of the njth derivative at τj of a polynomial that has a root of exact order nj at τj .
Hence, in that case every column of the square matrix QW is bound. This makes QW invertible, hence W
is 1-1. If, on the other hand, τk = τk+1, then × in the lower left corner becomes zero since it is w0(τk+1),
hence then wj(τk+1) = 0 for every j = 0:k, therefore every p ∈ ranW vanishes at τk+1, hence ran W cannot
be Πk.

4.27 (a)T; (b)T; (c)F; (d)F.
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