Answers to all problems in chapter 6

- **6.1** $(1,-1,1)^{c}(1,1,1)/(1,-1,1)^{c}(1,-1,1)=1/3$, hence the projection is (1,1,1)/3.
- **6.2** $\alpha = v^{c}(x y)/(v^{c}v) = -2/3$, hence the projection is $y + \alpha v = (7, -2, 5)/3$.
- **6.3** To minimize $||y-z-[v,w](-\alpha,\beta)||$ over all $(-\alpha,\beta) \in \mathbb{R}^2$, let V := [v,w]. Then $[V^cV,V^c(y-z)] = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 5/2 \\ 2 & 0 & 6 \end{bmatrix}$, hence $(-\alpha,\beta) = (3,-5/2)$, therefore the distance is $||(0,-3/2,3/2)|| = \sqrt{2}(3/2) = 2.121 \cdots$.

6.4 With
$$V := [v_1, v_2], V^c V = \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix}$$
, hence $P_V = VV^c/9 = \begin{bmatrix} 5 & -2 & 4 \\ -2 & 8 & 2 \\ 4 & 2 & 5 \end{bmatrix}/9$.

- (b) $P_V y = (7, 8, 11)/9$.
- **6.5** (a) $V^{c}V = \begin{bmatrix} \int ()^{0} & \int ()^{1} \\ \int ()^{1} & \int ()^{2} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2/3 \end{bmatrix}$, hence $P_{V} = V \begin{bmatrix} 1/2 & 0 \\ 0 & 3/2 \end{bmatrix} V^{c}$.
- (b) $V^{c}()^{2} = (\int ()^{2}, \int ()^{3}) = (2/3, 0)$, therefore $P_{V}()^{2} = V(1/3, 0) = 1/3()^{0}$.
- **6.6** From proof of (6.11), $||u+v||^2 = ||u||^2 + ||v||^2$ if and only if $v^c u + u^c v = 0$. If $\mathbb{F} = \mathbb{R}$, then $v^c u = u^c v$, hence this happens if and only if $u^c v = 0$, i.e., $u \perp v$. If $\mathbb{F} = \mathbb{C}$, then $v^c u = \overline{u^c v}$, hence this happens if and only if $u^c v$ is purely imaginary, which is not the same as saying that $u \perp v$.
- **6.7** (a)With $V = [()^0, ()^1]$, and t = 1:10, and y = (1, 4, 9, ..., 100), $V_t^c V_t = \begin{bmatrix} \sum ()^0 & \sum ()^1 \\ \sum ()^1 & \sum ()^2 \end{bmatrix} = \begin{bmatrix} 10 & 55 \\ 55 & 385 \end{bmatrix}$, while $V_t^c y = (385, 3025)$, so $[V_t^c V_t, V_t^c y] = \begin{bmatrix} 10 & 55 & 385 \\ 55 & 385 & 3025 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5.5 & 38.5 \\ 0 & 82.5 & 907.5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -22 \\ 0 & 1 & 11 \end{bmatrix}$. Hence $11(()^1 2)$ is it. (b) Now $V_t^c V_t = \begin{bmatrix} 10 & 0 \\ 0 & 82.5 \end{bmatrix}$ and $V_t y = (385, 907.5)$, and 907.5/82.5 = 11, hence

the discrete least-squares straight line approximation is $38.5()^0 + 11(()^1 - 5.5) = 11()^1 + (38.5 - 11 * 5.5) = 11()^1 - 22()^0$. (c) In (b), $V_t^c V_t$ is diagonal, hence the normal equations $V_t^c V_t$? = $V_t^c V_t$ are easier to solve.

- **6.8** (a) No $(f(e_2, e_2) = 0)$; (b) No (f((1, 1, 0), (1, 1, 0) = 0); (c) No $(x \mapsto f(x, y))$ not linear, e.g., not homogeneous); (d) No (f((1, i, 0), (1, i, 0)) = 0); (e) No (f((1, -1, 1), (1, -1, 1))) is not positive;
- **6.9** (a) $\langle x, x \rangle = (Ax)^c Ax = ||Ax||^2 \ge 0$, with equality iff Ax = 0, i.e., x = 0, since A is invertible. (b) For any y, $y^c A^c A$ is a composition of linear maps, hence linear. (c) $(Ax)^c Ay = \overline{(Ay)^c Ax}$.
- **6.10** $V^{c}V = \text{diag}(2,3,6)$ is invertible, and $\#V = \dim \mathbb{R}^{3}$. So, $V^{-1}x = \text{diag}(1/2,1/3,1/6) * V^{c}x = e_{2}$. (Of course, since V(:,2) = x, no need to actually calculate the coordinates of x wrto V:-)
- **6.11** $V^cV = \text{diag}(3,6,6)$ and $(V^cV^{-1}V^ce_4 = (0,0,1/3), \text{ therefore } P_Ve_4 = (1/3)v_3 = (1,-1,0,2)/3 \neq e_4, \text{ thus } [V,v_4] \text{ with } v_4 := 3(e_4 P_Ve_4) = (-1,1,0,1) \text{ is an orthogonal basis for } \mathbb{R}^4.$
- **6.12** (a) With $\langle f, g \rangle := \sum_{j=1}^{10} f(j)g(j)$, we compute $\langle ()^1, ()^0 \rangle / \langle ()^0, ()^0 \rangle = 55/10 = 5.5$, hence $q_2 := ()^1 5.5$ is orthogonal to $q_1 := ()^0$. Also from H.P. 6.7, $q_3 := ()^2 (11()^1 22)$ is the error in the discrete least-squares approximation from Π_1 to $()^2$, hence is orthogonal to Π_1 . Hence $[()^0, q_2, q_3]$ is an orthogonal basis for Π_2 .
- (b) $\langle ()^3, q_1 \rangle / \langle ()^0, ()^0 \rangle = 3025/10 = 302.5$; $\langle ()^3, q_2 \rangle / \langle q_2, q_2 \rangle = 8695.5/82.5 = 105.4$; $\langle ()^3, q_3 \rangle / \langle q_3, q_3 \rangle = 8712/528 = 16.5$. Hence the discrete least squares quadratic approximation to ()³ is $302.5 + 105.4(()^1 5.5) + 16.5(()^2 11(()^1 2))$.
 - **6.13** (a) $V^{c}V = \begin{bmatrix} \int ()^{0} & \int ()^{1} \\ \int ()^{1} & \int ()^{2} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2/3 \end{bmatrix}$ is diagonal, hence V is orthogonal.
 - (b) $V^{c}()^{2} = (\int()^{2}, \int()^{3}) = (2/3, 0)$, hence $P_{V}()^{2} = ()^{0}(2/3)/2 + ()^{1}0/(3/2) = ()^{0}/3$.
- (c) Since $()^2 P_V()^2 \perp \text{ran } V$, know that $[()^0, ()^1, ()^2 ()^0/3]$ is 1-1 and orthogonal, into the 3-dim. space Π_2 , hence an orthogonal basis for it. $\|()^2 ()^0/3\|^2 = \langle ()^2 ()^0/3, ()^2 \rangle = 2/5 2/9 = 8/45$. Normalized: $[()^0/\sqrt{2}, ()^1\sqrt{3/2}, (()^2 ()^0/3)\sqrt{45/8}]$.
 - **6.14** $1.841 \cdots$ radians.
 - **6.15** Since the first column has length $\sqrt{k+1}$, all rows and columns must have that length. In partic-

ular, for each i, $\sum_{j=0}^{k} |z_i|^j = k+1$, hence $|z_i| = 1$. Also, for $i \neq h$, $s := \sum_{j=0}^{k} (\overline{z_h} z_i)^j = 0$, hence $z_h \neq z_i$, and, since $z_h^{-1} = \overline{z_h}$, also $1 - (z_h^{-1} z_i)^{k+1} = (1 - \overline{z_h} z_i) s = 0$, i.e., $z_h = r_{ih} z_i$ with r_{ih} a (k+1)st root of unity. In particular, $z_h = r_h z_1$ with (r_1, \ldots, r_k) pairwise distinct (k+1)st roots of unity. Since there are exactly k+1 such roots, we are done, with $z_1 = \exp(2\pi i\alpha)$.

6.16 (a) F; (b) F (e.g., take $x = y \neq 0$);