
Answers to all problems in chapter 6
6.1 (1,−1, 1)c(1, 1, 1)/(1,−1, 1)c(1,−1, 1) = 1/3, hence the projection is (1, 1, 1)/3.
6.2 α = vc(x − y)/(vcv) = −2/3, hence the projection is y + αv = (7,−2, 5)/3.
6.3 To minimize ‖y− z− [v, w](−α, β)‖ over all (−α, β) ∈ IR2, let V := [v, w]. Then [V cV, V c(y− z)] =[

3 2 4
2 2 1

]
→

[
0 −1 5/2
2 0 6

]
, hence (−α, β) = (3,−5/2), therefore the distance is ‖(0,−3/2, 3/2)‖ =

√
2(3/2) = 2.121 · · ·.

6.4 With V := [v1, v2], V cV =
[

9 0
0 9

]
, hence PV = V V c/9 =


 5 −2 4
−2 8 2
4 2 5


 /9.

(b) PV y = (7, 8, 11)/9.

6.5 (a) V cV =
[ ∫

()0
∫
()1∫

()1
∫
()2

]
=

[
2 0
0 2/3

]
, hence PV = V

[
1/2 0
0 3/2

]
V c.

(b) V c()2 = (
∫
()2,

∫
()3) = (2/3, 0), therefore PV ()2 = V (1/3, 0) = 1/3()0.

6.6 From proof of (6.11), ‖u+v‖2 = ‖u‖2+‖v‖2 if and only if vcu+ucv = 0. If IF = IR, then vcu = ucv,
hence this happens if and only if ucv = 0, i.e., u ⊥ v. If IF = C, then vcu = ucv, hence this happens if and
only if ucv is purely imaginary, which is not the same as saying that u ⊥ v.

6.7 (a)With V = [()0, ()1], and t = 1:10, and y = (1, 4, 9, . . . , 100), Vt
cVt =

[ ∑
()0

∑
()1∑

()1
∑

()2

]
=[

10 55
55 385

]
, while Vt

cy = (385, 3025), so [Vt
cVt, Vt

cy] =
[

10 55 385
55 385 3025

]
→

[
1 5.5 38.5
0 82.5 907.5

]
→

[
1 0 −22
0 1 11

]
.

Hence 11(()1 − 2) is it. (b) Now Vt
cVt =

[
10 0
0 82.5

]
and Vty = (385, 907.5), and 907.5/82.5 = 11, hence

the discrete least-squares straight line approximation is 38.5()0 + 11(()1 − 5.5) = 11()1 + (38.5 − 11 ∗ 5.5) =
11()1 − 22()0. (c) In (b), Vt

cVt is diagonal, hence the normal equations Vt
cVt? = Vt

cy are easier to solve.
6.8 (a) No (f(e2, e2) = 0); (b) No (f((1, 1, 0), (1, 1, 0) = 0); (c) No (x 7→ f(x, y) not linear, e.g., not

homogeneous); (d) No (f((1, i, 0), (1, i, 0)) = 0); (e) No (f((1,−1, 1), (1,−1, 1)) is not positive;
6.9 (a) 〈x, x〉 = (Ax)cAx = ‖Ax‖2 ≥ 0, with equality iff Ax = 0, i.e., x = 0, since A is invertible. (b)

For any y, ycAcA is a composition of linear maps, hence linear. (c) (Ax)cAy = (Ay)cAx.
6.10 V cV = diag(2, 3, 6) is invertible, and #V = dim IR3. So, V −1x = diag(1/2, 1/3, 1/6) ∗ V cx = e2.

(Of course, since V (:, 2) = x, no need to actually calculate the coordinates of x wrto V :-)
6.11 V cV = diag(3, 6, 6) and (V cV −1V ce4 = (0, 0, 1/3), therefore PV e4 = (1/3)v3 = (1,−1, 0, 2)/3 6=

e4, thus [V, v4] with v4 := 3(e4 − PV e4) = (−1, 1, 0, 1) is an orthogonal basis for IR4.

6.12 (a) With 〈f, g〉 :=
∑10

j=1 f(j)g(j), we compute 〈()1, ()0〉/〈()0, ()0〉 = 55/10 = 5.5, hence q2 :=
()1 − 5.5 is orthogonal to q1 := ()0. Also from H.P. 6.7, q3 := ()2 − (11()1 − 22) is the error in the discrete
least-squares approximation from Π1 to ()2, hence is orthogonal to Π1. Hence [()0, q2, q3] is an orthogonal
basis for Π2.

(b) 〈()3, q1〉/〈()0, ()0〉 = 3025/10 = 302.5; 〈()3, q2〉/〈q2, q2〉 = 8695.5/82.5 = 105.4; 〈()3, q3〉/〈q3, q3〉 =
8712/528 = 16.5. Hence the discrete least squares quadratic approximation to ()3 is 302.5 + 105.4(()1 −
5.5) + 16.5(()2 − 11(()1 − 2)).

6.13 (a) V cV =
[ ∫

()0
∫

()1∫
()1

∫
()2

]
=

[
2 0
0 2/3

]
is diagonal, hence V is orthogonal.

(b) V c()2 = (
∫
()2,

∫
()3) = (2/3, 0), hence PV ()2 = ()0(2/3)/2 + ()10/(3/2) = ()0/3.

(c) Since ()2−PV ()2 ⊥ ranV , know that [()0, ()1, ()2−()0/3] is 1-1 and orthogonal, into the 3-dim. space
Π2, hence an orthogonal basis for it. ‖()2 − ()0/3‖2 = 〈()2 − ()0/3, ()2〉 = 2/5 − 2/9 = 8/45. Normalized:
[()0/

√
2, ()1

√
3/2, (()2 − ()0/3)

√
45/8].

6.14 1.841 · · · radians.
6.15 Since the first column has length

√
k + 1, all rows and columns must have that length. In partic-
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ular, for each i,
∑k

j=0 |zi|j = k + 1, hence |zi| = 1. Also, for i 6= h, s :=
∑k

j=0(zhzi)j = 0, hence zh 6= zi,
and, since z−1

h = zh, also 1− (z−1
h zi)k+1 = (1− zhzi)s = 0, i.e., zh = rihzi with rih a (k + 1)st root of unity.

In particular, zh = rhz1 with (r1, . . . , rk) pairwise distinct (k + 1)st roots of unity. Since there are exactly
k + 1 such roots, we are done, with z1 =: exp(2πiα).

6.16 (a) F; (b) F (e.g., take x = y 6= 0);
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