Answers to all problems in chapter 7

- **7.1** If $X = \{0\}$ and $A \in L(X,Y)$ is invertible, then, necessarily, also dim Y = 0, and also A^{-1} has a trivial space as its domain, hence $||A^{-1}|| = 0$, by (7.6).
 - **7.2** By (7.12), $\|\operatorname{id}_X\| = \|VV^{-1}\| \le \|V\|\|V^{-1}\|$, while, for dim X > 0, $\|\operatorname{id}_X\| = 1$.
 - **7.3** Both [] and its inverse have the trivial space as their domain, hence have norm 0, therefore $\kappa([]) = 0$.
- **7.4** Since $||M_{\alpha}x|| = ||\alpha x|| = |\alpha|||x||$, get $||M_{\alpha}|| = \max_{x \neq 0} ||M_{\alpha}x||/||x|| = \max_{x \neq 0} |\alpha| = |\alpha|$. (For $X = \{0\}$, would have $M_{\alpha} = 0$, hence $||M_{\alpha}|| = 0$.)
 - **7.5** p = 1: $||D||_1 = \max_j ||D(i,j)||_1 = \max_j |D(j,j)|$.
 - $p = \infty$: $||D||_{\infty} = ||D^{t}||_{1} = \max_{j} |D^{t}(j, j)| = \max_{j} |D(j, j)|$.
- $p = 2 \colon \|Dx\|_2^2 = \sum_j |D(j,j)x_j|^2 \le \max_j |D(j,j)|^2 \|x\|_2, \text{ with equality if } x = e_{j^*} \text{ with } j^* = \operatorname{argmax}_j |D(j,j)|.$ Hence $\|Dx\|_2 \le \max_j |D(j,j)| \|x\|_2$ with equality if $x = e_{j^*}$, therefore $\|D\|_2 = \max_j |D(j,j)|$.