
1

1. Sets, assignments, lists, and maps

The basic objects of Mathematics are sets and maps. Linear Algebra is perhaps the first course where
this fact becomes evident and where it can be illustrated in a relative straightforward context. Since a
complete understanding of the course material requires a thorough appreciation of the basic facts about
maps, we begin with these and their simpler cousins, lists and assignments, after a brief review of standard
language and notation concerning sets.

Sets

Sets of interest in these notes include
◦ the natural numbers : IN := {1, 2, . . .};
◦ the integers : ZZ := {. . . ,−1, 0, 1, . . .} = (−IN) ∪ {0} ∪ IN;
◦ the nonnegative integers : ZZ+ := {p ∈ ZZ : p ≥ 0};
◦ the rational numbers : ZZ ÷ IN := {p/q : p ∈ ZZ, q ∈ IN};
◦ the real numbers and the nonnegative reals : IR, IR+ := {x ∈ IR : x ≥ 0};
◦ the complex numbers : C := IR + iIR = {x + iy : x, y ∈ IR}, i :=

√−1.
As these examples show, a set is often specified in the form {x : P (x)} which is read ‘the set of all x

that have the property P (x)’. Note the use of the colon, ‘:’, (rather than a vertical bar, ‘|’) to separate,
the initial, provisional, description of the typical element of the set, from the conditions imposed on it for
membership in the set. In these notes, braces, ‘{’, ‘}’, are used solely in the description of sets.

Standard notation concerning sets includes:
◦ #S denotes the cardinality of the set S, i.e., the count of its elements.
◦ x ∈ S and S 3 x both mean that x is an element of S.
◦ S ⊂ T , T ⊃ S both mean that S is a subset of T , i.e., all the elements of S are also elements of T ; if

we want to convey that S is a proper subset of T , meaning that S ⊂ T but S 6= T , we write S ⊆′ T .

◦ {} denotes the empty set, the set with no elements.
◦ S ∩ T := {x : x ∈ S and x ∈ T } is the intersection of S and T .
◦ S ∪ T := {x : x ∈ S or x ∈ T } is the union of S and T .
◦ S\T := {x : x ∈ S but not x ∈ T } is the difference of S from T and is often read ‘S take away T ’. In

these notes, this difference is never written S−T , as the latter is reserved for the set {s−t : s ∈ S, t ∈ T }
formable when both S and T are subsets of the same vector space.

1.1 What is the standard name for the elements of IR\(ZZ ÷ IN)?

1.2 What is the standard name for the elements of iIR?

1.3 Work out each of the following sets. (a) ({−1, 0, 1} ∩ IN) ∪ {−2}; (b) ({−1, 0, 1} ∪ {−2}) ∩ IN; (c) ZZ\(2ZZ); (d)
{z2 : z ∈ iIR}.

1.4 Determine #((IR+\{x ∈ IR : x2 > 16}) ∩ IN).

19aug02 c©2002 Carl de Boor

2 1. Sets, assignments, lists, and maps

Assignments

Definition: An assignment or, more precisely, an assignment on I or I-assignment

f = (fi)i∈I = (fi : i ∈ I)

associates with each element i in its domain (or, index set)

dom f := I

some term or item or entry or value fi. In symbols:

f : dom f : i 7→ fi.

The set
ran f := {fi : i ∈ dom f}

of all items appearing in the assignment f is called the range of the assignment.
If also g is an assignment, then f = g exactly when fi = gi for all i ∈ dom f = dom g.

Very confusingly, many mathematicians call an assignment an indexed set, even though it is most
certainly not a set. The term family is also used; however it, too, smacks too much of a set or collection.

We call the assignment f 1-1 if fi = fj =⇒ i = j.
The simplest assignment is the empty assignment, (), i.e., the unique assignment whose domain is

the empty set. Note that the empty assignment is 1-1 (why??).
An assignment with domain the set

n := {1, 2, . . . , n}
of the first n natural numbers is called a list, or, more explicitly, an n-list.

To specify an n-list f , it is sufficient to list its terms or values:

f = (f1, f2, . . . , fn).

For example, the cartesian product

×n
i=1Xi := X1 × X2 × · · · × Xn := {(x1, x2, . . . , xn) : xi ∈ Xi, i = 1:n}

of the set sequence X1, . . . , Xn is, by definition, the collection of all n-lists with the ith item or coordinate
taken from Xi, all i.

In these notes, we deal with n-vectors, i.e., n-lists of numbers, such as the 3-lists (1, 3.14,−14) or (3, 3, 3).
(Note that the list (3, 3, 3) is quite different from the set {3, 3, 3}. The list (3, 3, 3) has three terms, while
the set {3, 3, 3} has exactly one element.)

Definition: An n-vector is a list of n scalars (numbers). The collection of all real (complex)
n-vectors is denoted by IRn (Cn).

19aug02 c©2002 Carl de Boor

Matrices 3

In MATLAB, there are (at least) two ways to specify an n-vector, namely as a one-row matrix
(colloquially known as a row vector), or as a one-column matrix (colloquially known as a column
vector). For example, we can record the 3-vector x = (1.3, 3.14,−15) as the one-row matrix

x_as_row = [1.3,3.14,-15];

or as the one-column matrix

x_as_col = [1.3;3.14;-15];

One can also write a one-column matrix as a column, without the need for the semicolons, e.g.,

x_as_col = [1.3
3.14

-15];

Back to general assignments. If domf is finite, say #dom f = n, then we could always describe f by
listing the n pairs (i, fi), i ∈ dom f , in some fashion. However, that may not always be the most helpful
thing to do. Here is a famous example.

During the Cholera outbreak in 1854 in London, Dr. John Snow recorded the deaths by address, thus
setting up an assignment whose domain consisted of all the houses in London. But he did not simply make
a list of all the addresses and then record the deaths in that list. Rather, he took a map of London and
marked the number of deaths at each address right on the map (not bothering to record the value 0 of no
death). He found that the deaths clustered around one particular public water pump, jumped to a conclusion
(remember that this was well before Pasteur’s discoveries), had the handle of that pump removed and had
the satisfaction of seeing the epidemic fade.

Thus, one way to think of an assignment is to visualize its domain in some convenient fashion, and, ‘at’
each element of the domain, its assigned item or value.

This is routinely done for matrices, another basic object in these notes.
1.5 In some courses, students are assigned to specific seats in the class room. (a) If you were the instructor in such a

class, how would you record this seating assignment? (b) What are the range and domain of this assignment?

1.6 A relation between the sets X and Y is any subset of X × Y . Each such relation relates or associates with some
elements of X one or more elements of Y . For each of the following relations, determine whether or not it provides an
assignment on the set X := 3 =: Y . (i) R = X × Y ; (ii) R = {(x, x) : x ∈ X}; (iii) R = {(1, 2), (2, 2)}; (iv) R = {(1, 2), (2, 1)};
(v) R = {(1, 2), (3, 1), (2, 1)}; (vi) R = {(1, 2), (2, 2), (3, 1), (2, 1)}.

Matrices

Definition: A matrix, or, more precisely, an m × n-matrix, is any assignment with domain the
cartesian product

m × n = {(i, j) : i ∈ m, j ∈ n}
of m with n, for some nonnegative m and n.

The collection of all real, resp. complex m × n-matrices is denoted by IRm×n, resp. Cm×n.

In other words, a matrix has a rectangular domain. Correspondingly, it is customary to display such an
m × n-matrix A as a rectangle of items:

A =




A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n




19aug02 c©2002 Carl de Boor

4 1. Sets, assignments, lists, and maps

rather than as a list of pairs. This means that we must think of its domain rotated clockwise 90◦ when
compared to the ordinary (x, y)−plane, i.e., the domain of many other bivariate assignments (or maps).

This way of displaying a matrix has led to the following language.

Let A be an m × n-matrix. The item
Ai,j =: A(i, j)

corresponding to the index (i, j) is also called the (i, j)-entry of A. The list A(i, :) := (A(i, j) : j ∈ n)
is called the ith row of A, the list A(:, j) := (A(i, j) : i ∈ m) is called the jth column of A, and
the list (A(i, i) : 1 ≤ i ≤ min{m, n}) is called the (main) diagonal of A. By definition, At denotes
the transpose of the matrix A, i.e., the n× m-matrix whose (i, j)-entry is A(j, i), all i, j. Because of
its importance in the later parts of these notes, we usually use the conjugate transpose Ac := At

whose (i, j)-entry is the scalar A(j, i), with α the complex conjugate of the scalar α.
When m = n, A is called a square matrix of order n.

The notation A(i, :) for the ith row and A(:, j) for the jth column of the matrix A is taken from
MATLAB, where, however, A(i,:) is a one-row matrix and A(:,j) is a one-column matrix (rather
than just a vector). The (main) diagonal of a matrix A is obtained in MATLAB by the command
diag(A), which returns, in a one-column matrix, the list of the diagonal elements. The conjugate
transpose of a matrix A is obtained by A’. This is the same as the transpose if A is real. To get the
mere transpose At in the contrary case, you must use the notation A.’ which is strange since there
is nothing pointwise about this operation.

The above-mentioned need to look at displays of matrices sideways is further compounded
when we use MATLAB to plot a matrix. Here, for example, is the ‘picture’ of the 8 × 16-matrix
A := eye(8,16) as generated by the command mesh(eye(8,16)). This matrix has all its diagonal
entries equal to 1 and all other entries equal to 0. But note that a careless interpretation of this
figure would lead one to see a matrix with 16 rows and only 8 columns, due to the fact that MATLAB’s
mesh(A) command interprets A(i,j) as the value of a bivariate function at the point (j,i).

The rectangular identity matrix eye(8,16) as plotted in MATLAB

19aug02 c©2002 Carl de Boor

Lists of lists 5

While lists can be concatenated in just one way, by letting one follow the other, matrices can be
‘concatenated’ by laying them next to each other and/or one underneath the other. The only requirement
is that the result be again a matrix. If, for example,

A := [1 2] , B :=


 3

6
9


 C :=

[
4 5
7 8

]
,

then there are four different ways to ‘concatenate’ these three matrices, namely

 1 2 3

4 5 6
7 8 9


 ,


 4 5 3

7 8 6
1 2 9


 ,


 3 1 2

6 4 5
9 7 8


 ,


 3 4 5

6 7 8
9 1 2


 .

In MATLAB, one would write the three matrices

A = [1 2]; B = [3;6;9]; C = [4 5; 7 8];

and would describe the four possible ‘concatenations’

[[A;C],B]; [[C;A],B]; [B,[A;C]]; [B,[C;A]];

We saw earlier that even vectors are described in MATLAB by matrices since MATLAB only knows
matrices.

1.7 For the matrix A given by [[0 0 0 0];eye(2,4)], determine the following items: (a) the main diagonal; (b) the

second column; (c) the third row; (d) A(3, 2); (e) At; (f) Ac.

Lists of lists

Matrices are often used to record or represent a list f = (f1, f2, . . . , fn) in which all the items fj are
themselves lists. This can always be done if all the items fj in that list have the same length, i.e., for some
m and all j, #fj = m. Further, it can be done in two ways, by columns or by rows.

Offhand, it seems more natural to think of a matrix as a list of its rows, particularly since we are used
to writing things from left to right. Nevertheless, in these notes, it will always be done by columns, i.e., the
sequence (f1, f2, . . . , fn) of m-vectors will be associated with the m × n-matrix A whose jth column is fj ,
all j. We write this fact in this way:

A = [f1, f2, . . . , fn]; i.e., A(:, j) = fj , j = 1:n.

This makes it acceptable to denote by
#A

the number of columns of the matrix A. If I need to refer to the number of rows of A, I will simply count
the number of columns of its transpose, At, or its conjugate transpose, Ac, i.e., write

#At or #Ac,

rather than introduce yet another notation.
Here is a picturesque example of a list of lists, concerning the plotting of a polyhedron,

specifically the regular octahedron. Its vertex set consists of the three unit vectors and their
negatives, i.e.:

vs = [1 0 0; -1 0 0; 0 1 0; 0 -1 0; 0 0 1; 0 0 -1]’;

19aug02 c©2002 Carl de Boor

6 1. Sets, assignments, lists, and maps

Each face is a triangle, and we specify it here by giving the index, in the vertex array vs, of each
of its three vertices:

ff = [2 4 5; 2 5 3; 4 1 5; 2 6 4]’;
bf = [2 3 6; 6 1 4; 6 3 1; 5 1 3]’;

The faces have been organized into front faces and back faces, in anticipation of the plotting about
to be done, in which we want to plot the front faces strongly, but only lightly indicate the back
faces. Be sure to look for specific faces in the figure below, in which the six vertices are numbered
as in vs. E.g., the first front face, specified by the first column of ff, involves the vertices numbered
2, 4, 5; it is the face we are viewing head-on.

First, we set the frame:

axis([-1 1 -1 1 -1 1])
hold on, axis off

Then we plot the back-faces first (using r=[1 2 3 1] to make sure that we plot closed triangles):

r = [1 2 3 1];
for j=1:4

plot3(vs(1,bf(r,j)),vs(2,bf(r,j)),vs(3,bf(r,j)),’:’)
end

Then, finally, we plot the front faces and finish the picture:

for j=1:4
plot3(vs(1,ff(r,j)),vs(2,ff(r,j)),vs(3,ff(r,j)),’linew’,1.5);

end
hold off

Here is the resulting figure (obtained by the command print -deps2 figoctah.epswhich generates
a postscript file). I have labeled all the vertices by their index in the vertex list vs.

1

2

3

4

5

6

The regular octahedron.

1.8 The regular octahedron is one of five regular solids. Write a MATLAB function drawrs(n) that will, for input

n ∈ (1, 2, 3, 4, 5), draw the regular (tetrahedron, cube, octahedron, dodecahedron, icosahedron).

19aug02 c©2002 Carl de Boor

Maps 7

Maps

Definition: A map
f : X → Y : x 7→ f(x)

associates with each element x of its domain dom f := X a unique element y = f(x), called the value
of f at x, from its target tar f := Y . If g is also a map, then f = g means that dom f = dom g,
tar f = tar g, and f(x) = g(x) for all x ∈ dom f .

The collection
ran f := {f(x) : x ∈ X}

of all values taken by f is called the range of f . More generally, for any subset Z of X ,

fZ := f(Z) := {f(z) : z ∈ Z}

is called the image of Z under f . In these terms,

ran f = f(dom f).

Also, for any U ⊂ Y , the set
f−1U := {x ∈ X : f(x) ∈ U}

is called the pre-image of U under f . The collection of all maps from X to Y is denoted by

Y X or (X → Y).

Names other than map are in use, such as mapping, operator, morphism, transformation etc.,
all longer than ‘map’. A scalar-valued map is often called a function. Somewhat confusingly, many mathe-
maticians use the term ‘range’ for what we have called here ‘target’; the same mathematicians use the term
image for what we have called here ‘range’.

Every map f : X → Y gives rise to an assignment on X , namely the assignment (f(x) : x ∈ X). On
the other hand, an assignment f on X gives rise to many maps, one for each Y that contains ran f , by the
prescription X → Y : x 7→ fx. We call this the map into Y given by the assignment f .

If X is empty, then Y X consists of exactly one element, namely the map given by the empty assignment,
and this even holds if Y is empty.

However, if Y is empty and X is not, then there can be no map from X to Y , since any such map would
have to associate with each x ∈ X some y ∈ Y , yet there are no y ∈ Y to associate with.

“Wait a minute!”, you now say, “How did we manage when X was empty?” Well, if X is empty,
then there is no x ∈ X , hence the question of what element of Y to associate with never comes up. Isn’t
Mathematics slick?

1.9 Which of the following lists of pairs describes a map from {o,u,i,a} to {t,h,s}? A: ((u,s), (i,s), (a,t), (o,h), (i,s)); B:
((i,t), (a,s), (o,h), (i,s), (u,s)); C: ((a,s), (i,t), (u,h), (a,s), (i,t)).

1.10 For each of the following MATLAB maps, determine their range, as maps on real 2-by-3 matrices: (a) A 7→ max(A); (b)
A 7→ A(:,2); (c) A 7→ diag(A); (d) A 7→ size(A); (e) A 7→ length(A); (f) A 7→ cos(A); (g) A 7→ ones(A); (h) A 7→ sum(A).

1.11 The characteristic function χ
S

of the subset S of the set T is, by definition, the function on T that is 1 on S and

0 otherwise:

χ
S

: T → {0, 1} : t 7→
{

1, if t ∈ S;
0, otherwise.

Let R and S be subsets of T . Prove that (a) χ
R∪S

= max(χ
R

, χ
S
); (b) χ

R∩S
= min(χ

R
, χ

S
) = χ

R
χ

S
; (c) χ

R\S
= χ

R
(1−χ

S
).

(d) R ⊂ S iff χ
R

≤ χ
S
.

19aug02 c©2002 Carl de Boor

8 1. Sets, assignments, lists, and maps

1.12 Let f : T → U , and consider the map from subsets of U to subsets of T given by the rule

R 7→ f−1R := {t ∈ T : f(t) ∈ R}.

Prove that this map commutes with the set operations of union, intersection and ‘take away’, i.e., for any subsets R and S of
U , (a) f−1(R ∪ S) = (f−1R) ∪ (f−1S); (b) f−1(R ∩ S) = (f−1R) ∩ (f−1S); (c) f−1(R\S) = (f−1R)\(f−1S).

1-1 and onto

In effect, a map is an assignment together with a target, with the target necessarily containing the
range of the assignment. A major reason for introducing the concept of map (as distinct from the notion of
assignment) is in order to raise the following basic question:

Given the map f : X → Y and y ∈ Y , find x ∈ X for which f(x) = y, i.e., solve the equation

(1.1) f(?) = y.

Existence occurs if this equation has a solution for every y ∈ Y , i.e., if ran f = tar f . Uniqueness
occurs if there is at most one solution for every y ∈ Y , i.e., if f(x) = f(z) implies that x = z, i.e., the
assignment (f(x) : x ∈ X) is 1-1.

Here are the corresponding map properties:

Definition: The map f : X → Y is onto in case ran f = Y .

Definition: The map f : X → Y is 1-1 in case f(x) = f(y) =⇒ x = y.

Not surprisingly, these two map properties will play a major role throughout these notes. (At last count,
‘1-1’ appears over 300 times in these notes, and ‘onto’ over 200 times.) – There are other names in use for
these properties: An onto map is also called surjective or epimorph(ic), while a 1-1 map is also called
injective or monomorph(ic).

Perhaps the simplest useful examples of maps are those derived from lists, i.e., maps from some n into
some set Y . Here is the basic observation concerning such maps being 1-1 or onto.

(1.2) If g : n → Y is 1-1 and f : m → Y is onto, then n ≤ m, with equality if and only if g is also onto
and f is also 1-1.

Proof: The sequence (f(1), . . . , f(m)) contains every element of Y , but may also contain duplicates
of some. Throw out all duplicates to arrive at the sequence (h(1), . . . , h(q)) which still contains all elements
of Y but each one only once. In effect, we have ‘thinned’ f to a map h : q → Y that is still onto but also
1-1. In particular, q ≤ m, with equality if and only if there were no duplicates, i.e., f is also 1-1.

Now remove from (h(1), . . . , h(q)) every entry of the sequence (g(1), . . . , g(n)). Since h is onto and 1-1,
each of the n distinct entries g(j) does appear in h’s sequence exactly once, hence the remaining sequence
(k(1), . . . , k(r)) has length r = q − n. Thus, n ≤ q, with equality, i.e., with r = 0, if and only if g is onto.
In any case, the concatenation (g(1), . . . , g(n), k(1), . . . , k(r)) provides an ‘extension’ of the 1-1 map g to a
map to Y that is still 1-1 but also onto.

Put the two arguments together to get that n ≤ q ≤ m, with equality if and only if f is also 1-1 and g
is also onto.

19aug02 c©2002 Carl de Boor

Some examples 9

Note the particular conclusion that if both g : n → Y and f : m → Y are 1-1 and onto, then necessarily
n = m. This number is called the cardinality of Y and is denoted

#Y.

Hence, if we know that #Y = n, i.e., that there is some invertible map from n to Y , then we know that any
map f : n → Y is onto if and only if it is 1-1. This is the

(1.3) Pigeonhole principle: If f : n → Y with #Y = n, then f is 1-1 if and only if f is onto.

Any map from n to n that is 1-1 and onto is called a permutation of order n since its list is a
reordering of the first n integers. Thus (3, 2, 1) or (3, 1, 2) are permutations of order 3 while the map into 3
given by the 3-vector (3, 3, 1) is not a permutation, as it is neither 1-1 nor onto.

By the Pigeonhole principle, in order to check whether an n-vector represents a permutation, we only
have to check whether its range is n (which would mean that it is onto, as a map into n), or we only have to
check whether all its values are different and in n (which would mean that it is a 1-1 map into its domain,
n).

The finiteness of n is essential here. For example, consider the right shift

(1.4) r : IN → IN : n 7→ n + 1.

This maps different numbers to different numbers, i.e., is 1-1, but fails to be onto since the number 1 is not
in its range. On the other hand, the left shift

(1.5) l : IN → IN : n 7→ max{n− 1, 1}
is onto, but fails to be 1-1 since it maps both 1 and 2 to 1.

In light of this example, it is all the more impressive that such a pigeonhole principle continues to hold
for certain special maps f : X → Y with both X and Y infinite. Specifically, according to (4.16)Corollary,
if X and Y are vector spaces of the same finite dimension and f : X → Y is a linear map, then f is 1-1
if and only f is onto. This result is one of the high points of basic linear algebra. A more down-to-earth
formulation of it, as in (3.16)Theorem, is the following: A linear system with as many equations as unknowns
has a solution for every right-hand side if and only if it has only the trivial solution when the right-hand
side is 0.

1.13 Prove: any g : n → Y with n > #Y cannot be 1-1.

1.14 Prove: any f : m → Y with m < #Y cannot be onto.

1.15 Let g : n → Y be 1-1, and f : m → Y be onto. Prove that

(i) for some k ≥ n, g can be ‘extended’ to a map h : k → Y that is 1-1 and onto;

(ii) for some k ≤ m, f can be ‘thinned’ to a map h : k → Y that is onto and 1-1.

1.16 Prove: If T is finite and S ⊂ T , then S is finite, too. (Hint: consider the set N of all n ∈ IN ∪ {0} for which there is
a 1-1 map g : n → S.)

1.17 Prove that S ⊂ T and #T < ∞ implies that #S ≤ #T , with equality if and only if S = T .

Some examples

The next simplest maps after those given by lists are probably those that come to you in the form of a
list of pairs. For example, at the end of the semester, I am forced to make up a grade map. The authorities
send me the domain of that map, namely the students in this class, in the form of a list, and ask me to
assign, to each student, a grade, thus making up a list of pairs of the form

name | grade

09sep02 c©2002 Carl de Boor

10 1. Sets, assignments, lists, and maps

Here at UW, the target of the grade map is the set

{A, AB, B, BC, C, D, F, I},

but there is no requirement to make this map onto. In fact, I could not meet that requirement if there were
fewer than 8 students in the class. Neither is it required to make the grade map 1-1. In fact, it is not possible
to make the grade map 1-1 if the class has more than 8 students in it. But if the class has exactly 8 students
in it, then a grade map that is onto is automatically also 1-1, and a grade map that is 1-1 is automatically
also onto.

There are many maps in your life that are given as a list of pairs, such as the list of dorm-room
assignments or the price list in the cafeteria. The dorm-room assignment list usually has the set of students
wanting a dorm room as its domain and the set of available dorm rooms as its target, is typically not 1-1,
but the authorities would like it to be onto. The price list at the cafeteria has all the items for sale as its
domain, and the set IN/100 := {m/100 : m ∈ IN} of all positive reals with at most two digits after the
decimal point as its target. There is little sense in wondering whether this map is 1-1 or onto.

1.18 Describe an interesting map (not already discussed in class) that you have made use of in the last month or so (or,
if nothing comes to mind, a map that someone like you might have used recently). Be sure to include domain and target of
your map in your description and state whether or not it is 1-1, onto.

Maps and their graphs

One successful mental image of a ‘map’ is to imagine both domain and target as sets of some possibly
indistinct shape, with curved arrows indicating with which particular element in the target the map f
associates a particular element in the domain.

x

f(x)

X Y

One way to visualize the map f : X → Y : x 7→ f(x).

Another successful mental (and more successful mathematical) image of a map f : X → Y is in terms
of its graph, i.e., in terms of the set of pairs

{(x, f(x)) : x ∈ X}.

In fact, the mathematically most satisfying definition of ‘map from X to Y ’ is: a subset of X × Y that, for
each x ∈ X , contains exactly one pair (x, y). In this view, a map is its graph.

Here, for example, is the (graph of the) grade map G for a graduate course I taught recently. I
abbreviated the students’ names, to protect the innocent.

19aug02 c©2002 Carl de Boor

Maps and their graphs 11

NA

•

SC

•

SG
•

AK

•

TK

•

AM

•

JP

•

DS

•

ST

•

TW

•

ZH

•A
AB
B
BC
C
D
F
I

You may be more familiar with the graphs of real functions, such as the ‘squaring’ map

()2 : [0 . . 2] → [0 . . 4] : x 7→ x2,

whose graph is shown in the next figure.

X = [0 . . 2] = dom f = tar f−1

Y = [0 . . 4] = tar f = dom f−1

X × Y

Y × X

4

y = f(?)

0

0

?

2

The graph of the squaring map f := ()2 : [0 . . 2] → [0 . . 4] : x 7→ x2 and of
its inverse f−1 =

√
: [0 . . 4] → [0 . . 2] : x 7→ √

x.

19aug02 c©2002 Carl de Boor

12 1. Sets, assignments, lists, and maps

1.19 For each of the following subsets R of the cartesian product X × Y with X = [0 . . 2] and Y = [0 . . 4], determine
whether it is the graph of a map from X to Y and, if it is, whether that map is 1-1 and/or onto or neither.

(a) R = {(x, y) : y = (x − 1/2)2}; (b) R = {(x, y) : x ≥ 1, y = (2x − 2)2}; (c) R = {(x, y) : y = (2x − 2)2}; (d)
R = {(x, y) : x = y}.

1.20 Same as previous problem, but with X and Y interchanged and, correspondingly, R replaced by R−1 := {(y, x) ∈
Y × X : (x, y) ∈ R}. Also, discuss any connections you see between the answers in these two problems.

Invertibility

The graph of a map f helps us solve the standard ‘computational’ problem involving maps, namely the
problem of finding an x ∈ X that solves the equation

f(?) = y

for given f : X → Y and y ∈ Y . The solution set is the pre-image of {y} under f , i.e., the set

f−1{y} = {x ∈ X : f(x) = y}.
For example, when looking at the graph of the above grade map G, we see that G−1{AB} = {JP, ST},
while G−1{D} = {} (the empty set). In the first case, we have two solutions, in the second case, we have
none.

In effect, when looking for solutions to the equation f(?) = y, we are looking at the graph of f with
the roles of domain and target interchanged: We are trying to associate with each y ∈ Y some x ∈ X in
such a way that f(x) = y. If f is onto, then there is at least one solution for every y ∈ Y , and conversely
(existence). If f is 1-1, then there is at most one solution for any y ∈ Y , and conversely (uniqueness).
Ideally, there is, for each y ∈ Y , exactly one x ∈ X for which f(x) = y.

Definition: The map f : X → Y is invertible := for every y ∈ Y there exists exactly one x ∈ X for
which f(x) = y.

Let f : X → Y .
f is invertible if and only if f is 1-1 and onto.
f is invertible if and only if the inverse of its graph, i.e., the set

{(f(x), x) : x ∈ X} ⊂ Y × X,

is the graph of a map from Y to X . This latter map is called the inverse of f and is denoted by f−1.

Any 1-1 assignment f , taken as a map into its range, is invertible, since it is both 1-1 and onto. The
above grade map G fails on both counts to be invertible, it is neither 1-1 nor onto. The squaring map
()2 : [0 . . 2] → [0 . . 4] : x 7→ x2, on the other hand, is invertible since it is both 1-1 and onto. The earlier
figure shows the graph of its inverse, obtained from the graph of the squaring map by reversing the roles of
domain and target. In effect, we obtain the inverse of the graph of f by looking at the graph of f sideways
and can often tell at a glance whether or not it is the graph of a map, i.e., whether f is 1-1 and onto.

A map may be ‘half’ invertible, i.e., it may be either 1-1 or onto, without being both. For example, the
right shift (1.4) is 1-1, but not onto, while the left shift (1.5) is onto, but not 1-1. Only if domain and target
happen to have the same finite number of elements, then being 1-1 is guaranteed to be the same as being
onto, by the pigeonhole principle (see Problem 1.33).

(1.6) If f : X → Y , with #X = #Y < ∞, then f 1-1 or onto implies f 1-1 and onto, i.e., invertible.

19aug02 c©2002 Carl de Boor

Invertibility 13

In particular, for any finite X , any map f : X → X that is 1-1 or onto is automatically invertible.
The notion of f being ‘half’ invertible is made precise by the notions of left and right inverse. Their

definition requires the identity map, often written

id

if its domain (which is also its target) is clear from the context. The full definition is:

idX : X → X : x 7→ x.

In other words, the identity map is a particularly boring map, it leaves everything unchanged.
We also need map composition:

Definition: The composition f ◦ g of two maps f : X → Y and g : U → W ⊂ X is the map

f ◦ g : U → Y : u 7→ f(g(u)).

We write fg instead of f ◦ g whenever there is no danger of confusion.
Map composition is associative, i.e., whenever fg and gh are defined, then

(fg)h = f ◦ (gh).

There is a corresponding definition for the composition x ◦ y of two assignments, x and y, under the
assumption that ran y ⊂ domx. Thus,

xy := x ◦ y = (xyi : i ∈ dom y)

is an assignment whose domain is dom y and whose range is contained in ranx.
As a simple example, if x is an n-vector and y is an m-vector with ran y ⊂ n = {1, . . . , n}, then

z := xy := x ◦ y = (xy1 , . . . , xym).

In MATLAB, if x describes the n-vector x and y describes the m-vector y with entries in n =
{1, . . . , n}, then z=x(y) describes the m-vector z = xy = x ◦ y.

In the same way, if A ∈ IFm×n, and b is a k-list with entries from m = {1, . . . , m}, and c
is an l-list with entries from n = {1, . . . , n}, then A(b, c) is a k × l-matrix, namely the matrix
D := A(b, c) ∈ IFk×l with

D(i, j) = A(b(i), c(j)), i ∈ k, j ∈ l.

In effect, the matrix D = A(b, c) is obtained from A by choosing rows b(1), b(2), . . . , b(k) and
columns c(1), c(2), . . . , c(l) of A, in that order.

If all rows, in their natural order, are to be chosen, then use A(:,c). Again if all columns, in
their natural order, are to be chosen, then use A(b,:).

In particular, A(1,:) is the matrix having the first row of A as its sole row, and A(:,end) is
the matrix having the last column of A as its sole column. The matrix A(1:2:end,:) is made up
from all the odd rows of A. A(end:-1:1,:) is the matrix obtained from A by reversing the order
of the rows (as could also be obtained by the command fliplr(A)). A(:,2:2:end) is obtained by
removing from A all odd-numbered columns. If x is a one-row matrix, then x(ones(1,m),:) and
x(ones(m,1),:) both give the matrix having all its m rows equal to the single row in x (as would
the expression repmat(x,m,1)).

19aug02 c©2002 Carl de Boor

14 1. Sets, assignments, lists, and maps

MATLAB permits the expression A(b,c) to appear on the left of the equality sign: If A(b,c) and
D are matrices of the same size, then the statement

A(b,c) = D;

changes, for each (i,j) ∈ domD, the entry A(b(i),c(j)) of A to the value of D(i,j). What if, e.g.,
b is not 1-1? MATLAB does the replacement for each entry of b, from the first to the last. Hence,
the last time is the one that sticks. For example, if a=1:4, then the statement a([2 2 2])=[1 2
3] changes a to [1 3 3 4]. On the other hand, if A appears on both sides of such an assignment,
then the one on the right is taken to be as it is at the outset of that assignment. For example,

A([i,j],:) = A([j,i],:);

is a nice way to interchange the ith row of A with its jth.

As a first use of map composition, here is the standard test for a map being onto or 1-1.

If fg is onto, then f is onto; if fg is 1-1, then g is 1-1.

Proof: Since ran(fg) ⊂ ran f ⊂ tar f = tar fg, fg onto implies f onto. Also, if g(y) = g(z), then
(fg)(y) = (fg)(z), hence fg 1-1 implies y = z, i.e., g is 1-1.

For example, the composition lr of the left shift (1.5) with the right shift (1.4) is the identity, hence l
is onto and r is 1-1 (as observed earlier).

Remark. The only practical way to check whether a given g is 1-1 is to come up with an f so that fg
is ‘obviously’ 1-1, e.g., invertible. The only practical way to check whether a given f is onto is to come up
with a g so that fg is ‘obviously’ onto, e.g., invertible.

Definition: If f ∈ Y X and g ∈ XY and fg = id, then f (being to the left of g) is a left inverse of
g, and g is a right inverse of f . In particular, any left inverse is onto and any right inverse is 1-1.

To help you remember which of f and g is onto and which is 1-1 in case fg = id, keep in mind that
being onto provides conclusions about elements of the target of the map while being 1-1 provides conclusions
about elements in the domain of the map.

Now we consider the converse statements.

If f : X → Y is 1-1, then f has a left inverse.

Proof: If f is 1-1 and x ∈ X is some element, then

g : Y → X : y 7→
{

f−1{y} if y ∈ ran f ;
x otherwise,

is well-defined since each y ∈ ran f is the image of exactly one element of X . With g so defined, gf = id
follows.

19aug02 c©2002 Carl de Boor

Invertibility 15

The corresponding statement: If f : X → Y is onto, then f has a right inverse would have the following
‘proof’: Since f is onto, we can define g : Y → X : y 7→ some point in f−1{y}. Regardless of how we pick
that point g(y) ∈ f−1{y}, the resulting map is a right inverse for f . – Some object to this argument since it
requires us to pick, for each y, a particular element from that set f−1{y}. The belief that this can always
be done is known as “The Axiom of Choice”.

If f is an invertible map, then f−1 is both a right inverse and a left inverse for f . Conversely, if g is a
right inverse for f and h is a left inverse for f , then f is invertible and h = f−1 = g.
Consequently, if f is invertible, then: (i)f−1 is also invertible, and (f−1)−1 = f ; and, (ii) if also g is
an invertible map, with tar g = dom f , then fg is invertible, and (fg)−1 = g−1f−1 (note the order
reversal).

Proof: Let f : X → Y be invertible. Since, for every y ∈ Y , f−1(y) solves the equation f(?) = y,
we have ff−1 = idY , while, for any x ∈ X , x is a solution of the equation f(?) = f(x), hence necessarily
x = f−1(f(x)), thus also f−1f = idX .

As to the converse, if f and has both a left and a right inverse, then it must be both 1-1 and onto, hence
invertible. Further, if hf = idX and fg = idY , then (using the associativity of map composition),

h = h idY = h ◦ (fg) = (hf)g = idXg = g,

showing that h = g, hence h = f−1 = g.
As to the consequences, the identities ff−1 = idY and f−1f = idX explicitly identify f as a right

and left inverse for f−1, hence f must be the inverse of f−1. Also, by map associativity, (fg)g−1f−1 =
f idXf−1 = ff−1 = idY , etc.

While fg = id implies gf = id in general only in case #dom f = #tar f < ∞, it does imply that gf
is as much of an identity map as it can be: Indeed, if fg = id, then (gf)g = g ◦ (fg) = g id = g, showing
that (gf)x = x for every x ∈ ran g. There is no such hope for x 6∈ ran g, since such x cannot possibly be
in ran gf = g(ran f) ⊂ ran g. However, since gf(x) = x for all x ∈ ran g, we conclude that ran gf = ran g.
This makes gf the identity on its range, ran g. In particular, (gf) ◦ (gf) = gf , i.e., gf is idempotent or, a
projector.

(1.7) Proposition: If f : X → Y and fg = idY , then gf is a projector, i.e., the identity on its range,
and that range equals ran g.

For example, the composition lr of the left shift (1.5) with the right shift (1.4) is the identity, hence rl
must be the identity on ran r = {2, 3, . . .} and, indeed, it is.

If the n-vector c in MATLAB describes a permutation, i.e., if the map c : n → n : j 7→ c(j) is
1-1 or onto, hence invertible, then the n-vector cinv giving its inverse can be obtained with the
commands

cinv = c; cinv(c) = 1:length(c);

The first command makes sure that cinv starts out as a vector of the same size as c. With that,
the second command changes cinv into one for which cinv(c) = [1,2,...,length(c)]. In other
words, cinv describes a left inverse for (the map given by) c, hence the inverse (by the pigeonhole
principle).

19aug02 c©2002 Carl de Boor

16 1. Sets, assignments, lists, and maps

A second, more expensive, way to construct cinv is with the help of the command sort, as
follows:

[d, cinv] = sort(c);

For (try help sort), whether or not c describes a permutation, this command produces, in the
n-vector d, the list of the items in c in nondecreasing order, and provides, in cinv, the recipe for
this re-ordering:

d(i)=c(cinv(i)), i= 1:n.

In particular, if c describes a permutation, then, necessarily, d = [1,2,3,...], therefore c(cinv)
= [1,2,...,length(c)], showing that cinv describes a right inverse for (the map given by) c,
hence the inverse (by the pigeonhole principle).

Both of these methods extend, to the construction of a left, respectively a right, inverse, in
case the map given by c has only a left, respectively a right, inverse.

1.21 Let f : 2 → 3 be given by the list (2, 3), and let g : 3 → 2 be the map given by the list (2, 1, 2).

(a) Describe fg and gf (e.g., by giving their lists).

(b) Verify that fg is a projector, i.e., is the identity on its range.

1.22 For each of the following maps, state whether or not it is 1-1, onto, invertible. Also, describe a right inverse or a left
inverse or an inverse for it or else state why such right inverse or left inverse or inverse does not exist.

The maps are specified in various ways, e.g., by giving their list and their target or by giving both domain and target and
a rule for constructing their values.

(a) a is the map to {1, 2, 3} given by the list (1, 2, 3).

(b) b is the map to {1, 2, 3, 4} given by the list (1, 2, 3).

(c) c is the map to {1, 2} given by the list (1, 2, 1).

(d) d : IR2 → IR : x 7→ 2x1 − 3x2.

(e) f : IR2 → IR2 : x 7→ (−x2, x1).

(f) g : IR2 → IR2 : x 7→ (x1 + 2, x2 − 3).

(g) h : IR → IR2 : y 7→ (y/2, 0).

1.23 Verify that, in the preceding problem, dh = id, and explain geometrically why one would call hd a projector.

1.24 Prove: If fg = fh for g, h : S → T and with f : T → U 1-1, then g = h.

1.25 Prove: If fh = gh for g, h : T → U and with h : S → T onto, then f = g.

1.26 If both f and g are maps from n to n, then so are both fg and gf . In particular, for any f ∈ nn, its power sequence

f0 := idn, f1 := f, f2 := f ◦ f, f3 := f ◦ f2, . . .

is well defined. Further, since nn is finite, the sequence f0, f1, f2, . . . of powers must eventually repeat itself. In other words,
there must be a first r such that fr = fj for some j < r. Let’s call the difference d := r − j between these two exponents the
cycle length of f .

(a) Find the cycle length for the map given by the sequence (2, 3, 4, 1, 1). (Feel free to use MATLAB.)

(b) Also determine the cycle lengths for the following maps:

A:=(2,3,4,5,1); B:=(2,3,1,5,4); C:=(1,2,3,4,5);
D:=(2,5,2,2,1); E:=(2,5,2,5,2); F:=(2,5,2,2,5).

(c) Given all these examples (and any others you care to try), what is your guess as to the special nature of the map fd in
case the cycle length of f is d and f is invertible?

1.27 Finish appropriately the following MATLAB function

function b = ii(a)
% If ran(a) = N := {1,2,...,length(a)} , hence a describes
% the invertible map
% f:N --> N : j -> a(j)
% then b describes the inverse of f , i.e., the map g:N --> N for which
% fg = id_N and gf = id_N .
% Otherwise, the message
% The input doesn’t describe an invertible map
% is printed and an empty b is returned.

19aug02 c©2002 Carl de Boor

The inversion of maps 17

1.28 Let fi : X → X for i = 1:n, hence g := f1 · · · fn is also a map from X to X. Prove that g is invertible if and only if
each fi is invertible, and, in that case, g−1 = f−1

n · · · f−1
1 . (Note the order reversal!)

1.29 If f : S → T is invertible, then f has exactly one left inverse. Is the converse true?

1.30 Let g be a left inverse for f : S → T , and assume that #S > 1. Prove that g is the unique left inverse for f iff g is
1-1. (Is the assumption that #S > 1 really needed?)

1.31 Let g be a right inverse for f . Prove that g is the unique right inverse for f iff g is onto.

1.32 If f : S → T is invertible, then f has exactly one right inverse. Is the converse true?

1.33 Let n := #X, hence there is an invertible g : n → X.

(i) Prove: For any f : X → Y , f is 1-1 (onto) if and only if the map fg is 1-1 (onto).

(ii) Use (i) to derive (1.6) from (1.3).

The inversion of maps

The notions of 1-1 and onto, and the corresponding notions of right and left inverse, are basic to the
discussion of the standard ‘computational’ problem already mentioned earlier: for f : X → Y and y ∈ Y ,
solve

(1.1) f(?) = y.

When we try to solve (1.1), we are really trying to find, for each y ∈ Y , some x ∈ X for which f(x) = y, i.e.,
we are trying to come up with a right inverse for f . Existence of a solution for every right side is the same
as having f onto, and is ensured by the existence of a right inverse for f . Existence of a left inverse for f
ensures uniqueness: If hf = id, then f(x) = f(y) implies that x = h(f(x)) = h(f(y)) = y. Thus existence
of a left inverse implies that f is 1-1. But existence of a left inverse does not, in general, provide a solution.

When f has its domain in IRn and and its target in IRm, then we can think of solving (1.1) numerically.
Under the best of circumstances, this still means that we must proceed by approximation. The solution is
found as the limit of a sequence of solutions to linear equations, i.e., equations of the form A? = b, with A
a linear map. This is so because linear (algebraic) equations are the only kind of equations we can actually
solve exactly (ignoring roundoff). This is one reason why Linear Algebra is so important. It provides
the mathematical structures, namely vector spaces and linear maps, needed to deal efficiently with linear
equations and, thereby, with other equations.

1.34 T/F

(a) 0 is a natural number.

(b) #{3, 3, 3} = 1.

(c) #(3, 3, 3) = 3.

(d) ({3, 1, 3, 2, 4} ∩ {3, 5, 4}) ∪ {3, 3} = {4, 3, 3, 3}.
(e) If A, B are finite sets, then #(A ∪ B) = #A + #B − #(A ∩ B).

(f) #{} = 1.

(g) {3, 3, 1, 6}\{3, 1} = {3, 6}.
(h) If f : X → X for some finite X, then f is 1-1 if and only if f is onto.

(i) The map f : 3 → 3 given by the list (3, 1, 2) is invertible, and its inverse is given by the list (2, 3, 1).

(j) The map f : 3 → 2 given by the list (1, 2, 1) has a right inverse.

(k) If U ⊂ tar f , then f maps f−1U onto U .

(l) The map f is invertible if and only if f−1 is the graph of a map.

19aug02 c©2002 Carl de Boor

18 2. Vector spaces and linear maps

2. Vector spaces and linear maps

Vector spaces, especially spaces of functions

Linear algebra is concerned with vector spaces. These are sets on which two operations, vector addition
and multiplication by a scalar, are defined in such a way that they satisfy various laws. Here they are, for
the record:

(2.1) Definition: To say that X is a linear space (of vectors), or a vector space, over the
commutative field IF (of scalars) means that there are two maps, (i) X × X → X : (x, y) 7→ x + y
called (vector) addition; and (ii) IF × X → X : (α, x) 7→ αx =: xα called scalar multiplication,
which satisfy the following rules.
(a) X is a commutative group with respect to addition; i.e., addition

(a.1) is associative: x + (y + z) = (x + y) + z;
(a.2) is commutative: x + y = y + x;
(a.3) has neutral element: ∃0 ∀x x + 0 = x;
(a.4) has inverse: ∀x ∃y x + y = 0.

(s) scalar multiplication is
(s.1) associative: α(βx) = (αβ)x;
(s.2) field-addition distributive: (α + β)x = αx + βx;
(s.3) vector-addition distributive: α(x + y) = αx + αy;
(s.4) unitary: 1x = x.

It is standard to denote the element y ∈ X for which x + y = 0 by −x since such y is uniquely determined
by the requirement that x + y = 0. I will denote the neutral element in X by the same symbol, 0, used for
the zero scalar.

While the scalars can come from some abstract field, we will only be interested in the real scalars IR
and the complex scalars C. Also, from a practical point of view, the most important linear spaces consist
of functions, i.e., of scalar-valued maps all on some common domain. This means that the typical linear
space we will deal with is (a subset of) the collection of all maps IFT from some fixed domain T into the
scalar field IF (either IF = IR or IF = C), with pointwise addition and multiplication by scalars. Here is
the definition:

19aug02 c©2002 Carl de Boor

