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vertex i to vertex j is the sum of the probabilities that we would have gone from i to some k in the first step
and thence to j in the second step, i.e., the number∑

k

Mi,kMk,j = M2
i,j.

More generally, the probability that we have gone after m steps from vertex i to vertex j is the number Mm
i,j ,

i.e., the (i, j)-entry of the mth power of the matrix M .
A study of the powers of such a stochastic matrix reveals that, for large m, all the rows of Mm look

more and more alike. Precisely, for each row i,

lim
m→∞Mm

i: = x∞

for a certain (i-independent) vector x∞ with nonnegative entries that sum to one; this is part of the so-called
Perron-Frobenius Theory. In terms of the random walk, this means that, for large m, the probability that
we will be at vertex j after m steps is more or less independent of the vertex we started off from. One can
find this limiting probability distribution x∞ as a properly scaled eigenvector of the transpose M t of M
belonging to the eigenvalue 1.

As the simple example M =
[

0 1
1 0

]
shows, the last paragraph isn’t quite correct. Look for the

discussion of the Perron-Frobenius theorem later in these notes (see pages 134ff).

polynomials in a map: Once we know the powers Ak of A, we can also construct polynomials in A,
in the following way. If p is the polynomial

p : t 7→ c0 + c1t + c2t
2 + · · · + cktk,

then we define the linear map p(A) to be what we get when we substitute A for t:

p(A) := c0 id + c1A + c2A
2 + · · · + ckAk.

We can even consider power series. The most important example is the matrix exponential:

(10.3) exp(A) := id + A + A2/2 + A3/6 + · · · + Ak/k! + · · · .

The matrix exponential is used in solving the first-order system

(10.4) Dy(t) = Ay(t) for t > 0, y(0) = b

of constant-coefficient ordinary differential equations. Here A is a square matrix, of order n say, and y(t) is
an n-vector that depends on t. Further,

Dy(t) := lim
h→0

(y(t + h) − y(t))/h

is the first derivative at t of the vector-valued function y. One verifies that the particular function

y(t) := exp(tA)b, t ≥ 0,

solves the differential equation (10.4). Practical application does require efficient ways for evaluating the
power series

exp((tA)) := id + tA + (tA)2/2 + (tA)3/6 + · · · + (tA)k/k! + · · · ,
hence for computing the powers of tA.
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100 10. The powers of a linear map and its spectrum

Eigenvalues and eigenvectors

The calculation of Akx is simplest if A maps x to a scalar multiple of itself, i.e., if

Ax = µx = xµ

for some scalar µ. For, in that case, A2x = A(Ax) = A(xµ) = Axµ = xµ2 and, more generally,

(10.5) Ax = xµ =⇒ Akx = xµk, k = 0, 1, 2, . . . .

If x = 0, this will be so for any scalar µ. If x 6= 0, then this will be true for at most one scalar µ. That scalar
is called an eigenvalue for A with associated eigenvector x.

(10.6) Definition: Let A ∈ L(X). Any scalar µ for which there is a nontrivial vector x ∈ X so that
Ax = xµ is called an eigenvalue of A, with (µ, x) the corresponding eigenpair. The collection of all
eigenvalues of A is called the spectrum of A and is denoted spec(A).
Thus

spec(A) = {µ ∈ IF : A − µ id is not invertible}.
All the elements of null(A − µ id)\0 are called the eigenvectors of A associated with µ. The number

ρ(A) := max | spec(A)| = max{|µ| : µ ∈ spec(A)}

is called the spectral radius of A.

In the best of circumstances, there is an entire basis V = [v1, v2, . . . , vn] for X = domA consisting
of eigenvectors for A. In this case, it is very easy to compute Akx for any x ∈ X . For, in this situation,
Avj = vjµj , j = 1:n, hence

AV = [Av1, . . . , Avn] = [v1µ1, . . . , vnµn] = V M,

with M the diagonal matrix
M := diag(µ1, µ2, . . . , µn).

Therefore, for any k,
AkV = V Mk = V diag(µk

1 , . . . , µk
n).

Also, since V is a basis for X , any x ∈ X can be written (uniquely) as x = V a for some n-vector a and thus

Akx = AkV a = V Mka = v1µ
k
1a1 + v2µ

k
2a2 + · · · + vnµk

nan

for any k. For example, for such a matrix and for any t,

exp(tA) = V exp(tM)V −1 = V diag(. . . , exp(tµj), . . .)V −1.

To be sure, if A is not 1-1, then at least one of the µj must be zero, but this doesn’t change the fact that M
is a diagonal matrix.

(10.7) Example: The matrix A :=
[

2 1
1 2

]
maps the 2-vector x := (1, 1) to 3x and the 2-vector

y := (1,−1) to itself. Hence, A[x, y] = [3x, y] = [x, y] diag(3, 1) or

A = V diag(3, 1)V −1, with V := [x, y] =
[

1 1
1 −1

]
.
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Elimination gives

[V, id] =
[

1 1 1 0
1 −1 0 1

]
→

[
1 1 1 0
0 −2 −1 1

]
→

[
1 0 1/2 1/2
0 −2 −1 1

]
→

[
1 0 1/2 1/2
0 1 1/2 −1/2

]
,

hence

V −1 =
[

1 1
1 −1

]
/2.

It follows that, for any k,

Ak = V diag(3k, 1)V −1 =
[

3k 1
3k −1

] [
1 1
1 −1

]
/2 =

[
3k + 1 3k − 1
3k − 1 3k + 1

]
/2.

In particular,

A−1 =
[

1/3 + 1 1/3 − 1
1/3 − 1 1/3 + 1

]
/2 =

[
2 −1
−1 2

]
/3.

Also,

exp(tA) = V diag(e3t, et)V −1 =
[

e3t + et e3t − et

e3t − et e3t + et

]
.

10.1 Let A =

[
1 2
2 4

]
. (i) Find a basis V and a diagonal matrix M so that A = V MV −1. (ii) Determine the matrix

exp(A).

10.2 Let A =

[
4 1 −1
2 5 −2
1 1 2

]
.

Use elimination to determine all eigenvectors for this A belonging to the eigenvalue 3, and all eigenvectors belonging to
the eigenvalue 5. (It is sufficient to give a basis for null(A − 3 id) and for null(A − 5 id).)

10.3

(a) Prove that the matrix A =

[
4 1 −1
2 5 −2
1 1 2

]
maps the vector space Y := ran V with V :=

[
0 2
3 1
1 1

]
into itself, hence the

restriction of A to Y , i.e.,

A|Y := B : Y → Y : y 7→ Ay

is a well-defined linear map. (You will have to verify that ran AV ⊆ ran V ; looking at the rref of [V AV ] should help.)

(b) Determine the matrix representation of B with respect to the basis V for dom B = Y , i.e., compute the matrix V −1BV .
(Hint: (5.4)Example tells you how to read off this matrix from the calculations in (a).)

(c) Determine the spectrum of the linear map B = A|Y defined in (a). (Your answer in (b) could be helpful here since similar

maps have the same spectrum.)

10.4 Prove that 0 is the only eigenvalue of the matrix A =

[
0 1 2
0 0 3
0 0 0

]
and that, up to scalar multiples, e1 is the only

eigenvector for A.

10.5 Let µ ∈ spec(A) (hence Ax = µx for some x 6= 0). Prove:

(i) For any scalar α, αµ ∈ spec(αA).

(ii) For any scalar α, µ + α ∈ spec(A + α id).

(iii) For any natural number k, µk ∈ spec(Ak).

(iv) If A is invertible, then µ 6= 0 and µ−1 ∈ spec(A−1).

(v) If A is a matrix, then µ ∈ spec(At) and µ ∈ spec(Ac).
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102 10. The powers of a linear map and its spectrum

Diagona(liza)bility

Definition: A linear map A ∈ L(X) is called diagona(liza)ble if it has an eigenbasis, i.e., if there
is a basis for its domain X consisting entirely of eigenvectors for A.

(10.8) Lemma: If Vµ is a basis for null(A − µ id), then [Vµ : µ ∈ spec(A)] is 1-1.

Proof: Note that, for any µ ∈ spec(A) and any ν,

(A − ν id)Vµ = (µ − ν)Vµ,

and, in particular, (A − µ id)Vµ = 0. Hence, if
∑

µ Vµaµ = 0, then, for each µ ∈ spec(A), after applying
to both sides of this equation the product of all (A − ν id) with ν ∈ spec(A)\µ, we are left with the
equation (

∏
ν 6=µ(µ − ν))Vµaµ = 0, and this implies that aµ = 0 since Vµ is 1-1 by assumption. In short,

[Vµ : µ ∈ spec(A)]a = 0 implies a = 0.

(10.9) Corollary: #spec(A) ≤ dim domA, with equality only if A is diagonalizable.

(10.10) Proposition: A linear map A ∈ L(X) is diagonalizable if and only if

(10.11) dimX =
∑

µ∈spec(A)

dimnull(A − µ id).

Proof: By (10.8)Lemma, (10.11) implies that dom A has a basis consisting of eigenvectors for A.
Conversely, if V is a basis for X = domA consisting entirely of eigenvectors for A, then A = V MV −1

for some diagonal matrix M =: diag(µ1, . . . , µn), hence, for any scalar µ, (A − µ id) = V (M − µ id)V −1. In
particular, null(A − µ id) = ran[vj : µ = µj ], hence

∑
µ∈spec(A) dim null(A − µ id) =

∑
µ∈spec(A) #{j : µj =

µ} = n = #V = dimX .

(10.10)Proposition readily identifies a circumstance under which A is not diagonable, namely when
null(A−µ id)∩ran(A−µ id) 6= {0} for some µ. For, with Vν a basis for null(A−ν id) for any ν ∈ spec(A), we
compute AVν = νVν , hence (A−µ id)Vν = (ν−µ)Vν and therefore, for any ν 6= µ, Vν = (A−µ id)Vν/(ν−µ) ⊂
ran(A − µ id). This places all the columns of the 1-1 map V\µ := [Vν : ν 6= µ] in ran(A − µ id) while, by
(10.8)Lemma, ranVµ ∩ ranV\µ is trivial. Hence, if ranVµ = null(A − µ id) has nontrivial intersection with
ran(A − µ id), then ranV\µ cannot be all of ran(A − µ id), and therefore

∑
ν 6=µ

dimnull(A − ν id) = #V\µ < dim ran(A − µ id) = dimX − dimnull(A − µ id),
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hence, by (10.10)Proposition, such A is not diagonable.
This has motivated the following

Definition: The scalar µ is a defective eigenvalue of A if

null(A − µ id) ∩ ran(A − µ id) 6= {0}.

Any such µ certainly is an eigenvalue (since, in particular, null(A−µ id) 6= {0}), but I don’t care for such
negative labeling; if it were up to me, I would call such µ an interesting eigenvalue, since the existence of
such eigenvalues makes for a richer theory. Note that, by (4.18)Proposition, µ is a defective eigenvalue for
A iff, for any bases V and W for ran(A − µ id) and null(A − µ id) respectively, [V, W ] is not 1-1.

(10.12) Corollary: If A has a defective eigenvalue, then A is not diagonable.

10.6 Prove: if A ∈ L(X) is diagonalizable and #spec(A) = 1, then A = µ idX for some µ ∈ IF.

10.7 What is a simplest matrix A with spec(A) = {1, 2, 3}?
10.8 For each of the following matrices A ∈ IF2×2, determine whether or not 0 is a defective eigenvalue (give a reason for

your answer). (a) A = 0. (b) A =

[
1 2
2 4

]
. (c) A =

[−2 −1
4 2

]
. (d) A = id2.

10.9 Prove that any linear projector P on a finite-dimensional vector space X is diagonalizable. (Hint: Show that, for

any basis U for ran P and any basis W for null P , V := [U, W ] is a basis for X, and that all the columns of V are eigenvectors

for P . All of this should follow from the fact that P 2 = P .)

Similarity is an equivalence relation

Definition: We say that A ∈ L(X) and B ∈ L(Y ) are similar to each other and write

A ∼ B

in case there is an invertible V ∈ L(Y, X) so that

A = V BV −1.

In particular, a linear map is diagonable if and only if it is similar to a diagonal matrix.
In trying to decide whether or not a given linear map A is diagonable, it is sufficient to decide this

question for any convenient linear map B similar to A. For, if such a B is diagonable, i.e., similar to
a diagonal matrix, then A is similar to that very same diagonal matrix. This follows from the fact that
similarity is an equivalence relation:

(10.13) Proposition: Similarity is an equivalence relation. Specifically,
(i) A ∼ A (reflexive);
(ii) A ∼ B implies B ∼ A (symmetric);
(iii) A ∼ B and B ∼ C implies A ∼ C (transitive).
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104 10. The powers of a linear map and its spectrum

Proof: Certainly, A ∼ A, since A = idA id. Also, if A = V BV −1 for some invertible V , then also
W := V −1 is invertible, and B = V −1AV = WAW−1. Finally, if A = V BV −1 and B = WCW−1, then
U := V W is also invertible, and A = V (WCW−1)V −1 = UCU−1.

Now, any linear map A ∈ L(X) on a finite-dimensional vector space X is similar (in many ways if X

is not trivial) to a matrix. Indeed, for any basis V for X , Â := V −1AV is a matrix similar to A. The map
Â so defined is indeed a matrix since both its domain and its target is a coordinate space (the same one, in
fact; hence Â is a square matrix). We conclude that, in looking for ways to decide whether or not a linear
map is diagonable, it is sufficient to know how to do this for square matrices.

Are all square matrices diagonable?

By (10.12)Corollary, this will be so only if all square matrices have only nondefective eigenvalues.

(10.14) Example: The simplest example of a matrix with a defective eigenvalue is provided by the
matrix

N :=
[

0 1
0 0

]
= [0, e1].

Since this matrix is triangular, so is N −µ id for any µ, and as −µ are the latter’s diagonal entries, N −µ id
fails to be invertible if and only if µ = 0. Hence, spec(N) = {0}. Yet null N = ran[e1] = ranN , hence the
only eigenvalue of N is defective, and N fails to be diagonable, by (10.12)Corollary.

Of course, for this simple matrix, one can see directly that it cannot be diagonable, since, if it were,
then some basis V for IR2 would consist entirely of eigenvectors for the sole eigenvalue, 0, for N , hence, for
this basis, NV = 0, therefore N = 0, contrary to fact.

We will see shortly that, on a finite-dimensional vector space over the complex scalars, almost all linear
maps are diagonable, and all linear maps are almost diagonable.

Does every square matrix have an eigenvalue?

Since an eigenvalue for A is any scalar µ for which null(A − µ id) is not trivial, the answer necessarily
depends on what we mean by a scalar.

If we only allow real scalars, i.e., if IF = IR, then not every matrix has eigenvalues. The simplest example
is a rotation of the plane, e.g., the matrix

A :=
[

0 −1
1 0

]
= [e2,−e1].

This linear map rotates every x ∈ IR2 90 degrees counter-clockwise, hence the only vector x mapped by it
to a scalar multiple of itself is the zero vector. In other words, this linear map has no eigenvectors, hence no
eigenvalues.

The situation is different when we also allow complex scalars, i.e., when IF = C, and this is the reason
why we considered complex scalars all along in these notes. Now every (square) matrix has eigenvalues, as
follows from the following simple argument.

(10.15) Theorem: Any linear map A on some nontrivial finite-dimensional vector space X over the
complex scalar field IF = C has eigenvalues.

Proof: Let n := dimX , pick any x ∈ X\0 and consider the column map

V := [x, Ax, A2x, . . . , Anx].
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Since #V > dim tarV , V cannot be 1-1. This implies that some column of V is free. Let Adx be the first
free column, i.e., the first column that is in the range of the columns preceding it. Then nullV contains
exactly one vector of the form

a = (a0, a1, . . . , ad−1, 1, 0, · · · , 0),

and this is the vector we choose. Then, writing the equation V a = 0 out in full, we get

(10.16) a0x + a1Ax + · · · + ad−1A
d−1x + Adx = 0.

Now here comes the trick: Consider the polynomial

(10.17) p : t 7→ a0 + a1t + · · · + ad−1t
d−1 + td.

Then, substituting for t our map A, we get the linear map

p(A) := a0 id + a1A + · · · + ad−1A
d−1 + Ad.

With this, (10.16) can be written, very concisely,

p(A)x = 0.

This is not just notational convenience. Since ad = 1, p isn’t the zero polynomial, and since x 6= 0, d must be
greater than 0, i.e., p cannot be just a constant polynomial. Thus, by the Fundamental Theorem of Algebra,
p has zeros. More precisely,

p(t) = (t − z1)(t − z2) · · · (t − zd)

for certain (possibly complex) scalars z1, . . . , zd. This implies (see (10.19)Lemma below) that

p(A) = (A − z1 id)(A − z2 id) · · · (A − zd id).

Now, p(A) is not 1-1 since it maps the nonzero vector x to zero. Therefore, not all the maps (A − zj id),
j = 1:d, can be 1-1. In other words, for some j, (A − zj id) fails to be 1-1, i.e., has a nontrivial nullspace,
and that makes zj an eigenvalue for A.

(10.18) Example: Let’s try this out on our earlier example, the rotation matrix

A := [e2,−e1].

Choosing x = e1, we have
[x, Ax, A2x] = [e1, e2,−e1],

hence the first free column is A2x = −e1, and, by inspection,

x + A2x = 0.

Thus the polynomial of interest is
p : t 7→ 1 + t2 = (t − i)(t + i),

with
i :=

√−1

the imaginary unit (see the Backgrounder on complex numbers). In fact, we conclude that, with y :=
(A + i id)x, (A − i id)y = p(A)x = 0, while y = Ae1 + ie1 = e2 + ie1 6= 0, showing that (i, e2 + ie1) is an
eigenpair for this A.

19aug02 c©2002 Carl de Boor



106 10. The powers of a linear map and its spectrum

Polynomials in a linear map

The proof of (10.15)Theorem uses in an essential way the following fact.

(10.19) Lemma: If r is the product of the polynomials p and q, i.e., r(t) = p(t)q(t) for all t, then,
for any linear map A ∈ L(X),

r(A) = p(A)q(A) = q(A)p(A).

Proof: If you wanted to check that r(t) = p(t)q(t) for the polynomials r, p, q, then you would
multiply p and q term by term, collect like terms and then compare coefficients with those of r. For example,
if p(t) = t2 + t + 1 and q(t) = t − 1, then

p(t)q(t) = (t2 + t + 1)(t − 1) = t2(t − 1) + t(t − 1) + (t − 1) = t3 − t2 + t2 − t + t − 1 = t3 − 1,

i.e., the product of these two polynomials is the polynomial r given by r(t) = t3 − 1. The only facts you use
are: (i) free reordering of terms (commutativity of addition), and (ii) things like tt = t2, i.e., the fact that

titj = ti+j .

Both of these facts hold if we replace t by A.

Here is a further use of this lemma. We now prove that the polynomial p constructed in the proof of
(10.15) has the property that every one of its roots is an eigenvalue for A. This is due to the fact that we
constructed it in the form (10.17) with d the smallest integer for which Adx ∈ ran[x, Ax, . . . , Ad−1x]. Thus,
with µ any zero of p, we can write

(10.20) p(t) = (t − µ)q(t)

for some polynomial q necessarily of the form

q(t) = b0 + b1t + · · · + bd−2t
d−2 + td−1.

The crucial point here is that q is of degree < d. This implies that q(A)x 6= 0 since, otherwise, (b0, b1, . . . , 1)
would be a nontrivial vector in null[x, Ax, . . . , Ad−1x] and this would contradict the choice of d as the index
for which Adx is the first free column in [x, Ax, A2, . . .]. Since

0 = p(A)x = (A − µ id)q(A)x,

it follows that µ is an eigenvalue for A with associated eigenvector q(A)x.
This is exactly how we got an eigenvector for the eigenvalue i in (10.18)Example.

(10.21) Example: As another example, consider again the matrix A =
[

2 1
1 2

]
from (10.7)Example.

We choose x = e1 and consider

[x, Ax, . . . , Anx] = [e1, Ae1, A(Ae1)] =
[

1 2 5
0 1 4

]
.

Since [e1, Ae1, A
2e1] is in row echelon form, we conclude that the first two columns are bound. Elimination

gives the rref [
1 0 −3
0 1 4

]
,
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hence (3,−4, 1) ∈ null[e1, Ae1, A
2e1]. Correspondingly, p(A)e1 = 0, with

p(t) = 3 − 4t + t2 = (t − 3)(t − 1).

Consequently, µ = 3 is an eigenvalue for A, with corresponding eigenvector

(A − id)e1 = (1, 1);

also, µ = 1 is an eigenvalue for A, with corresponding eigenvector

(A − 3 id)e1 = (−1, 1).

Note that the resulting basis
[

1 −1
1 1

]
for IF2 consisting of eigenvectors for A differs in some detail from

the one we found in (10.7)Example. After all, if v is an eigenvector, then so is αv for any scalar α.

Here is some standard language concerning the items in our discussion so far. One calls any nontrivial
polynomial r for which r(A)x = 0 an annihilating polynomial for A at x. We may assume without loss
of generality that this polynomial is monic, i.e., its highest nonzero coefficient is 1, since we can always
achieve this by dividing the polynomial by its highest nonzero coefficient without changing the fact that it
is an annihilating polynomial for A at x. If such a polynomial is of exact degree k, say, then it has the form

r(t) = b0 + b1t + · · · + bk−1t
k−1 + tk.

Since r(A)x = 0, we conclude that

b0x + b1Ax + · · · + bk−1A
k−1x + Akx = 0.

In particular, Akx is in ran[x, Ax, . . . , Ak−1x], i.e., the column Akx of [x, Ax, A2x, . . .] is free. This implies
that k ≥ d, with d the degree of the polynomial p constructed in the proof of (10.15)Theorem. For, there
we chose d as the smallest index for which Adx is a free column of [x, Ax, A2, . . .]. In particular, all prior
columns must be bound. This makes p the unique monic polynomial of smallest degree for which p(A)x = 0.

Here, for the record, is a formal account of what we have proved.

(10.22) Proposition: For every A ∈ L(X) with dimX < ∞ and every x ∈ X\0, there is a unique
monic polynomial p of smallest degree for which p(A)x = 0. This polynomial is called the minimal
polynomial for A at x and is denoted

pA,x.

It can be constructed in the form

pA,x(t) = a0 + a1t + · · · + ad−1t
d−1 + td,

with d the smallest index for which Adx is a free column of [x, Ax, A2x, . . .]. Moreover, (a0, a1, . . . , 1)
is the unique vector in null[x, Ax, . . . , Adx] with its last entry equal to 1.

Assuming that X is a vector space over IF = C, every zero µ of pA,x is an eigenvalue of A, with
associated eigenvector q(A)x, where pA,x(t) =: (t−µ)q(t). (See the Backgrounder on Horner’s method
for the standard way to compute q from pA,x and µ.)

For example, consider the permutation matrix P = [e2, e3, e1] and take x = e1. Then

[x, Px, P 2x, P 3x] = [e1, e2, e3, e1].
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Hence, P 3x is the first free column here. The element in the nullspace corresponding to it is the vector
(−1, 0, 0, 1). Hence, the minimal polynomial for P at x = e1 is of degree 3; it is the polynomial p(t) = t3 −1.
It has the zero µ = 1, which therefore is an eigenvalue of P . A corresponding eigenvector is obtainable in
the form q(P )e1 with q(t) := p(t)/(t − 1) = t2 + t + 1, hence the eigenvector is e3 + e2 + e1.

10.10 Use Elimination as in (10.21) to determine all the eigenvalues and, for each eigenvalue, a corresponding eigenvector,

for each of the following matrices: (i)

[
7 −4
5 −2

]
; (b) [0, e1, e2] ∈ IR3×3 (try x = e3); (iii)

[−1 1 −3
20 5 10
2 −2 6

]
.

10.11

(a) Prove: If p is any nontrivial polynomial and A is any square matrix for which p(A) = 0, then spec(A) ⊆ {µ ∈ C : p(µ) = 0}.
(Hint: prove first that, for any eigenvector x for A with eigenvalue µ and any polynomial p, p(A)x = p(µ)x.)

(b) What can you conclude about spec(A) in case you know that A is idempotent, i.e., a linear projector, i.e., A2 = A?

(c) What can you conclude about spec(A) in case you know that A is nilpotent, i.e., Aq = 0 for some integer q?

(d) What is the spectrum of the linear map D : Πk → Πk of differentiation, as a map on polynomials of degree ≤ k?

10.12 Use the minimal polynomial at e1 to determine the spectrum of the following matrices: (i) [e2, 0]; (ii) [e2, e3, e1];
(iii) [e2, e2]; (iv) [e2, e1, 2e3].

10.13 Prove: (i) for any A, B ∈ L(X), null A ∩ null B ⊂ null(A + B). (ii) for any A, B ∈ L(X) with AB = BA,
null A + null B ⊂ null(AB). (iii) If d is the greatest common divisor of the nontrivial polynomials p1, . . . , pr and m is their
smallest common multiple, then, for any A ∈ L(X), null d(A) = ∩jpj(A) and null m(A) =

∑
j
null pj(A).

10.14 A subset F of the vector space X := C(1)(IR) of continuously differentiable functions is called D-invariant if the
derivative Df of any f ∈ F is again in F .

Prove: Any finite-dimensional D-invariant linear subspace Y of C(1)(IR) is necessarily the nullspace of a constant-coefficient

ordinary differential operator.

Every complex (square) matrix is similar to an upper triangular matrix

While having in hand a diagonal matrix similar to a given A ∈ L(X) is very nice indeed, for most
purposes it is sufficient to have in hand an upper triangular matrix similar to A. There are several reasons
for this.

One reason is that, as soon as we have an upper triangular matrix similar to A, then we can easily
manufacture from this a matrix similar to A and with off-diagonal elements as small as we please (except
that, in general, we can’t make them all zero).

A more fundamental reason is that, once we have an upper triangular matrix similar to A, then we know
the entire spectrum of A, since, by (3.19)Proposition, a triangular matrix is noninvertible iff some diagonal
entry is zero, hence the spectrum of an upper triangular matrix is the set of its diagonal entries, and similar
matrices have the same spectrum. Here are the various facts.

(10.23) Proposition: If A and Â are similar, then spec(A) = spec(Â).

Proof: If Â = V −1AV for some invertible V , then, for any scalar µ, Â − µ id = V −1(A − µ id)V .
In particular, Â − µ id is not invertible (i.e., µ ∈ spec(Â)) if and only if A − µ id is not invertible (i.e.,
µ ∈ spec(A)).
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(10.24) Corollary: If A ∈ L(X) is similar to a triangular matrix Â, then µ is an eigenvalue for A if
and only if µ = Âj,j for some j. In a formula,

spec(A) = {Âj,j : all j}.

More precisely, if Â = V −1AV is upper triangular and j is the smallest index for which µ = Âj,j , then
there is an eigenvector for A belonging to µ available in the form w = V a, with a the element in the
standard basis for null(Â−µ id) associated with the (free) jth column, i.e., a ∈ null(Â−µ id), aj = 1,
and all other entries corresponding to free columns are 0; cf. (3.9).

The now-standard algorithm for computing the eigenvalues of a given matrix A is the QR method. It
generates a sequence B1, B2, B3, . . . of matrices all similar to A that converges to an upper triangular matrix.
To the extent that the lower triangular entries of Bk are small (compared to ‖Bk‖, say), the diagonal entries
of Bk are close to eigenvalues of Bk, hence of A. The actual version of the QR method used in MATLAB is
quite sophisticated, as much care has gone into making the algorithm reliable in the presence of round-off as
well as fast.

The MATLAB command eig(A) gives you the list of eigenvalues of A. The more elaborate
command [V,M]=eig(A) gives you, in V, a list of corresponding ‘eigenvectors’, in the sense that,
approximately, AV(:, j) = V(:, j)M(j, j), all j.

(10.25) Theorem: Every complex (square) matrix is similar to an upper triangular matrix.

Proof: The proof is by induction on the order, n, of the given matrix A.
If n = 1, then A is a 1 × 1-matrix, hence trivially upper triangular. Assume that we have proved the

theorem for all matrices of order n − 1 and let A be of order n. Since the scalar field is C, we know that A
has an eigenvector, u1, say, with corresponding eigenvalue, µ1 say. Extend u1 to a basis U = [u1, u2, . . . , un]
for Cn. Then

AU = [Au1, · · · , Aun] = [u1µ1, Au2, · · · , Aun].
We want to compute U−1AU . For this, observe that U−1u1 = U−1Ue1 = e1. Therefore,

U−1AU = [e1µ1, U
−1Au2, · · · , U−1Aun].

Writing this out in detail, we have

U−1AU = Â :=




µ1 × · · · ×
0 × · · · ×
...

... · · · ...
0 × · · · ×


 =:

[
µ1 C
0 A1

]
.

Here, C is some 1× (n− 1) matrix of no further interest, A1 is a matrix of order n− 1, hence, by induction
hypothesis, there is some invertible W so that Â1 := W−1A1W is upper triangular. We compute

diag(1, W−1)Â diag(1, W ) =
[

1 0
0 W−1

] [
µ1 C
0 A1

] [
1 0
0 W

]
=

[
µ1 CW
0 W−1A1W

]
.

The computation uses the fact that multiplication from the left (right) by a block-diagonal matrix multi-
plies the corresponding rows (columns) from the left (right) by the corresponding diagonal blocks. Since
diag(1, W−1) diag(1, W ) = diag(1, idn−1) = idn, this shows that Â is similar to an upper triangular matrix.
Since A is similar to Â, this finishes the proof.
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Various refinements in this proof are possible (as we will show later, in the discussion of the Schur
form), to give more precise information about possible upper triangular matrices similar to a given A. For
the present, though, this is sufficient for our needs since it allows us to prove the following:

(10.26) Corollary: Every complex (square) matrix is similar to an ‘almost diagonal’ matrix. Pre-
cisely, for every complex matrix A and every ε > 0, there exists an upper triangular matrix Bε similar
to A whose off-diagonal entries are all < ε in absolute value.

Proof: By (10.25)Theorem, we know that any such A is similar to an upper triangular matrix.
Since similarity is transitive (see (10.13)Proposition), it is therefore sufficient to prove this Corollary in case
A is upper triangular, of order n, say.

The proof in this case is a simple trick: Consider the matrix

B := W−1AW,

with
W := diag(δ1, δ2, . . . , δn),

and the scalar δ to be set in a moment. W is indeed invertible as long as δ 6= 0, since then

W−1 = diag(δ−1, δ−2, . . . , δ−n).

Now, multiplying a matrix by a diagonal matrix from the left (right) multiplies the rows (columns) of that
matrix by the diagonal entries of the diagonal matrix. Therefore,

Bi,j = (W−1AW )i,j = Ai,jδ
j−i, all i, j.

In particular, B is again upper triangular, and its diagonal entries are those of A. However, all its pos-
sibly nontrivial off-diagonal entries lie above the diagonal, i.e., are entries Bi,j with j > i, hence are the
corresponding entries of A multiplied with some positive power of the scalar δ. Thus, if

c := max
i<j

|Ai,j |

and we choose δ := min{ε/c, 1}, then, we can be certain that

|Bi,j | ≤ ε, all i 6= j,

regardless of how small we choose that positive ε.

10.15 T/F

(a) The only diagonalizable matrix A having just one factorization A = V MV −1 with M diagonal is the empty matrix.

(b) If A is the linear map of multiplication by a scalar, then any basis for its domain is an eigenbasis for A.

(c) A triangular matrix of order n is diagonalizable if and only if it has n different diagonal entries.

(d) Any (square) triangular matrix is diagonalizable.

(e) Any matrix of order 1 is diagonalizable.

(f) A matrix of order n has n eigenvalues.

(g) Similar linear maps have the same spectrum.

(h) The linear map of differentiation on Πk is nilpotent.

(i) The identity map is idempotent.

(j) If the matrix A has 3 eigenvalues, then it must have at least 3 columns.

(k) If null(A − µ id) is not trivial, then every one of its elements is an eigenvector for A belonging to the eigenvalue µ.
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