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11. Convergence of the power sequence

Convergence of sequences in a normed vector space

Our discussion of the power sequence A%, A', A2, ... of a linear map naturally involves the convergence
of such a sequence.

Convergence of a vector sequence or a map sequence is most conveniently described with the aid of a
norm, as introduced earlier, starting at page 78.

Suppose z1, 22, 23, - - - is an infinite sequence of n-vectors. Recall our agreement to refer to the jth entry
of the kth term zj in such a vector sequence by z(j). We say that this sequence converges to the n-vector
Zoo and write

Zoo = lim zg,
k—o0

in case
lim [|zeo — 2|l = 0.
k—oo

It is not hard to see that
Zoo = lim zp, <= V{i} 200() = lim zp(2).
k—oo k—o0
Note that z,, = limg_, 2x if and only if, for every € > 0, there is some kg so that, for all & > kg,

||zoo — 2k]| < e. This says that, for any given € > 0 however small, all the terms in the sequence from a
certain point on lie in the “ball”

B(zoo) = {y € F" : ||y — 20| < €}

whose center is z,, and whose radius is €.

(11.1) Lemma: A convergent sequence is necessarily bounded. More explicitly, if the sequence ()
of n-vectors converges, then supy, ||xx| < oo, i.e., there is some ¢ so that, for all k, ||zz] < c.

The proof is a verbatim repeat of the proof of this assertion for scalar sequences, as given in the
Backgrounder on scalar sequences.

Analogously, we say that the sequence Ay, As, As, - - - of matrices converges to the matrix B and write
lim Ak = B,
k—o0

in case
lim ||B — Aklleo = 0.
k—oo

As in the case of vector sequences, a convergent sequence of matrices is necessarily bounded.

Here, for convenience, we have used the map norm associated with the max-norm since we have the
simple and explicit formula (7.16) for it. Yet we know from (7.24)Proposition that any two norms on any
finite-dimensional normed vector space are equivalent. In particular, if || ||" is any norm on L(IF") = IF"*",
then there is a positive constant ¢ so that

[Alloo/c < A" < c||Allo, VA €™
This implies that limy_,c || B — Ak||cc = 0 if and only if
lim ||B — Ax|" =0,
k—oo
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112 11. Convergence of the power sequence

showing that our definition of what it means for Ay to converge to B is independent of the particular matrix
norm we use. We might even have chosen the matrix norm

: Ax|
Al == max|A(3, j :max” =,
A = max] A )| = max 22

and so explicitly confirmed that convergence of matrices is entry-wise, i.e., limy_.o, Ax = B if and only if
lim Ag(i,5) = B(i,5), Vi,j.
k—o0

Note that, in this chapter, I am using MATLAB’s way of writing matrix entries, writing Ag(4,j) instead of
(Ag)s,; for the (¢, j)-entry of A, in order to keep the number of subscripts down.

11.1 For each of the following matrices A, work out AF for arbitrary k € IN and, from that, determine directly whether

1/2 210]

or not the power sequence A%, A' A2 ... converges; if it does, also determine that limit. (i) A := aidy; (ii) A := [ 0 12|

(i) A = [—e1,e2]; (iv) A = {g b]

C
Three interesting properties of the power sequence of a linear map

We have already most of the tools in hand needed to analyze the following three interesting properties
that the power sequence of A, i.e., the sequence

(11.2) A A A2

may have.
Let A € L(X) with dim X < oco. Then, for any basis V of X,

A:=VlAV

is a matrix similar to A, and, for any k, N
Ak = v ARy L,

Thus, if we understand the sequence (11.2) for any square matriz A, then we understand (11.2) for any
A € L(X) with dim X < oo.

For this reason, we state here the three interesting properties only for a matriz A.

We call the matrix A power-bounded in case its power sequence is bounded, i.e., sup;, || A¥||~ < oo,
i.e., there is a constant c so that, for all k, || A¥|. < c.

We call the matrix A convergent in case its power sequence converges, i.e., in case, for some matrix
B, B = limy,_.o, A".

We call the matrix A convergent to 0 in case

lim A* = 0.

k—o0

See the Backgrounder on the convergence of scalar sequences and, in particular, on the scalar sequence
(€% ¢ ¢2 ).

The first property is fundamental in the study of evolutionary (i.e., time-dependent) processes, such as
weather or fluid flow. In the simplest approximation, the state of the system (be it the weather or waves on
the ocean or whatever) at time ¢ is described by some vector y(t), and the state y(t + At) at some slightly

later time ¢ + At is computed as
y(t + At) = Ay(t),

with A some time-independent matrix. Such a process is called stable if |y(¢)|| remains bounded for all
time regardless of the initial state, y(0), of the system. Since y(kAt) = A¥y(0), the requirement of stability
is equivalent to the power boundedness of A.
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Splitting off the nondefective eigenvalues 113

The third property is fundamental in the study of iterative processes, as discussed earlier.

The second property is in between the other two. In other words, we have listed the three properties
here in the order of increasing strength: if A is convergent to 0, then it is, in particular, convergent. Again,
if A is convergent, then it is, in particular, power-bounded.

Suppose now that z is an eigenvector for A, with corresponding eigenvalue p. Then Ax = pz, hence
Akg = pFx for k =1,2,3,.... Suppose A is powerbounded. Then, in particular, for some ¢, we should have
oo = 1A% oolllloo > [|A* 2|0 = ||t¥2]|co = |1t/¥]|7|lce- Since ||x|loo # O, this implies that the scalar
sequence (|u|* : k =1,2,3,...) must be bounded, hence || < 1. Since we took an arbitrary eigenvector, we
conclude that

(11.3) A powerbounded = p(A) <1

Actually, more is true. Suppose that u is a defective eigenvalue for A, which, to recall, means that
null(A — pid) Nran(A — pid) # {0}.

In other words, there exists an eigenvector for A belonging to p of the form x = (A — pid)y. This implies
that
Ay =z + py.

Therefore
A’y = Az + pAy = px + p(x + py) = 2px + 1’y.

Therefore
APy = 2pAx + p* Ay = 2p°x + 1P (z + py) = 3’z + 1Py

By now, the pattern is clear:
Aby = ke + pby.

This also makes clear the difficulty: If |u| = 1, then
1A o llylloo > 1A%y llo0 > Kllzlloo = 13l co-

This shows that A cannot be powerbounded.

We conclude:

(11.4) Proposition: If the matrix A is powerbounded, then, for all 4 € spec(A4), |p| < 1, with
equality only if p is a nondefective eigenvalue for A.

Now we consider the case that A is convergent (hence, in particular, powerbounded). If A is convergent,
then, for any eigenvector x with associated eigenvalue p, the sequence (u*x : k =0,1,2,...) must converge.
Since x stays fixed, this implies that the scalar sequence (u* : k= 0,1,2,...) must converge. This, to recall,
implies that |u| < 1 with equality only if p = 1.

Finally, if A is convergent to 0, then, for any eigenvector x with associated eigenvalue p, the sequence
(uFx) must converge to 0. Since z stays fixed (and is nonzero), this implies that the scalar sequence (u*)
must converge to 0. This, to recall, implies that |u| < 1.

Remarkably, these simple necessary conditions just derived, for powerboundedness, convergence, and
convergence to 0, are also sufficient; see (11.10)Theorem.

For the proof, we need one more piece of information, namely a better understanding of the distinction
between defective and nondefective eigenvalues.

11.2 For each of the following four matrices, determine whether or not it is (a) powerbounded, (b) convergent, (c)
convergent to zero. (i) id,,; (i) [1,1;0,1]; (iii) [8/9,101%;0,8/9]; (iv) —id,,.
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114 11. Convergence of the power sequence

Splitting off the nondefective eigenvalues

Recall that the scalar p is called a defective eigenvalue for A € L(X) in case
null(A — pid) Nran(A — pid) # {0}.

(11.5) Proposition: If M is a set of nondefective eigenvalues of A € L(X), for some finite-dimensional
vector space X, then X has a basis U = [V, W], with V consisting entirely of eigenvectors of A
belonging to these nondefective eigenvalues, and W any basis for the subspace Z := ranp(A), with
p(t) == [T en (@ — 1)

Further, Z is A-invariant, meaning that A(Z) C Z, hence A|; : Z — Z : z — Az is a well-defined
map on Z, and spec(A| ) = spec(A)\M.

Proof: Since Ap(A) = p(A)A, we have AZ = A(ranp(A)) = ran Ap(A) = p(A)ran A C ranp(A) =
Z, showing Z to be A-invariant. This implies that A|, : Z — Z : z — Az is a well-defined linear map on Z.
We claim that X is the direct sum of nullp(A) and ranp(A), i.e.,
(11.6) X = nullp(A) + ranp(4).
Since, by (4.15)Dimension Formula, dim X = dim nullp(A) + dimranp(A), it is, by (4.26)Proposition, suffi-
cient to prove that
(11.7) null p(A) Nranp(A4) = {0}.

For its proof, let
puit—=p@)/(t—p), peM,

and recall from (5.6) that

(Pu/Pu(p) : o € M)
is a Lagrange basis for the polynomials of degree < # M. In particular,

1= Z Pu/Pu(p)-

peEM

Hence, with (10.19)Lemma, id = 3_ s pu(A)/pu(p) and so, for any z € X,

Tr = E Ly s

pneM
with
Ty o= pu(A)z/pu(p)
in null(A — pid) in case = € nullp(A) (since (A — pid)z, = p(A)z/p, (1)), but also in ran(A — pid) in case
also € ranp(A) C ran(A — pid), hence then z, = 0 since we assumed that each p € M is not defective.
This shows (11.7), hence (11.6).

More than that, we just saw that z € nullp(A) implies that z = }_ =z, with 2, € null(4 — pid), all

w € M, hence, nullp(A) C ran V', with

Vi=[V,:peM]
and V,, a basis for null(A — pid), all g. On the other hand, each column of V' is in null p(A), hence also
ran V' C null p(A), therefore V' is onto null p(A) and, since it is 1-1 by (10.8)Lemma, it is a basis for null p(A).
Therefore, by (11.6), U := [V, W] is a basis for X for any basis W for Z = ranp(A).

Finally, let v € spec(A). If v were in both M and spec(A| ), then Az = vz for some x € Z\0, yet also
p(A)z = 0, hence 0 # x € nullp(A) Nranp(A), contradicting (11.7). Thus, if v € M, then v & spec(A| ).
If, on the other hand, v ¢ M, then, with x any eigenvector for v, we have p(A)z = ax with

Q= H (V_:u’) #07
peEM
and so, © = a~'p(A)z € ranp(A) = Z, hence v € spec(A| ). This proves that spec(A|,) = spec(A)\M. O
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Splitting off the nondefective eigenvalues 115

It follows that the matrix representation for A with respect to this basis U = [V, W] has the simple form

_ M 0 . =
U TAU = {0 E} = diag(u, ..., por, B),
with p1,..., 1, a sequence taken from M, and B some square matrix, namely B=W-1AW.

(11.8) Theorem: Let A € L(X), with X a finite-dimensional vector space.
(i) If A is diagonable, then all its eigenvalues are nondefective.

(ii) If IF = € and all of A’s eigenvalues are nondefective, then A is diagonable.

Proof: (1) This is just a restatement of (10.12)Corollary.

(ii) If none of the eigenvalues of A is defective, then we can choose M = spec(A) in (11.5)Proposi-
tion, leaving A|, as a linear map with an empty spectrum. Hence, if also I = C, then we know from
(10.15)Theorem that ran W = dom A| ; must be trivial, hence V' is a basis for X. O

2 1

1 2}. Then A maps = := (1,1) to (3,3) = 3z. Hence, u:=3 €

Here is a simple example. Let A = [
spec(A). We compute
. -1 1 -1
ran(A — pid) ran[ 1 _1] = ran { 1 } ,
since the first column of (A — pid) is bound and the second is free. This also implies that null(4 — pid) is

one-dimensional, with V := [ﬂ a basis for it.

It follows, by inspection, that null(A — pid) Nran(A — pid) = {0} since the only vector of the form

1 _11] is 1-1, hence a

(1, 1) and of the form (—1,1)0 is the zero vector. Equivalently, the matrix U := 1

basis for IR?. Consequently, 3 is a nondefective eigenvalue for A.

Now, what about A|,, with Z = ran(A — pid)? In this case, things are very simple since Z is one-
dimensional. Since A(Z) C Z, A must map any z € Z to a scalar multiple of itself! In particular, since
z=(-1,1) € ran(4 — pid), A must map this z into a scalar multiple of itself, and this is readily confirmed
by the calculation that A maps z to —(2,1) + (1,2) = z, i.e., to itself. This shows that z is an eigenvector
for A belonging to the eigenvalue 1.
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116 11. Convergence of the power sequence

Altogether therefore,
AU = [Azx, Az] = [3z, z] = U diag(3, 1),

showing that A is actually diagonable.

This simple example runs rather differently when we change A to A := B ;] Since A is upper

triangular, its sole eigenvalue is p = 2. But (A — pid) = [8 (1)}, and we saw earlier that its range and

nullspace have the nontrivial vector e; in common. Hence, 2 is a defective eigenvalue for this matrix A.

(11.9) Example: Let A := [z][y]* with z,y € IR"\0. Then rank A = 1, hence ran A = ran[z] is
one-dimensional, therefore x is an eigenvector for A. Since Az = z (y'2), we have, in particular,

Ar =z (y'z),

hence z is an eigenvector for A belonging to the eigenvalue p := y'z.
Since A is of rank 1, dimnull A = n—1. Let V be a basis for null 4, i.e., V € L(]R”_l, null A) invertible.
Then U := [V, z] is 1-1 (hence a basis for IR") if and only if x € ran V| i.e., if and only if = ¢ null A.

case z & ranV: Then U = [V, z] is a basis for IR". Consider the representation A = U~ AU for A with
respect to this basis: With V' =: [v1, v2, ..., v,—1], we have Au; = Av; = 0 for j = 1:n—1, therefore

Ae; =0, j=1ln—1
Further, we have Ar = z (y'x), therefore
gen =U'AUe,, = U 'Ax = (y'x)en,

(recall that, for any z € IR™, U~z provides the coordinates of z with respect to the basis U, i.e., U(U " 1z) =
z). Hence, altogether,
A=10,...,0, (y'x)e,).

In particular, A is diagonable, with eigenvalues 0 and ytz.
case x € ranV: Then U = [V, z] is not a basis for IR". Worse than that, A is now not diagonable. This
is due to the fact that, in this case, the eigenvalue 0 for A is defective: For, x # 0 while Az = 0, hence

{0} #ran(A — 0id) =ran A = ranf[z] C null A = null(4 — 0id).

Therefore null(A — 0id) Nran(A — 0id) # {0}. O

It is hard to tell just by looking at a matrix whether or not it is diagonable. There is one exception: If
A is hermitian, i.e., equal to its conjugate transpose, then it is not only diagonable, but has an orthonormal
basis of eigenvectors, as is shown in the next chapter.

) _|B C
11.3 Prove: If A = {0 D}’

such a matrix A is invertible if and only if both B and D are invertible.)

with B and D square matrices, then spec(A) = spec(B) U spec(D). (Hint: Prove first that

1
11.4 Determine the spectrum of the matrix A := (2)
0

11.5 (a) Determine the spectrum of the matrix A :=

ONF oo w N
OFHN v+~ tw
WSR oo

] . (b) For which choices of a and b is A not diagonable?
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Three interesting properties of the power sequence of a linear map: The sequel

(11.10) Theorem: Let A € €"*". Then:

(i) A is powerbounded iff, for all p € spec(A), |p| < 1, with |u] =1 only if & is not defective.

(ii) A is convergent iff, for all u € spec(A), |p| < 1, with |p] = 1 only if p is not defective and p = 1.
(iii) A is convergent to 0 iff p(A4) < 1.

Proof: We only have to prove the implications ‘=", since we proved all the implications ‘=’ in
an earlier section (see pages 112ff).

We begin with (iii). Since A is a matrix over the complex scalars, we know from (10.26)Corollary that,
for any € > 0, we can find an upper triangular matrix B, similar to A and with all off-diagonal entries less
than e in absolute value. This means, in particular, that A = VB.V~! for some (invertible) matrix V/,
hence, for any k, A¥ = V(B.)¥V 1, therefore,

A" oo < IV sl Bell& IV ™ oo

We compute
1Bz lloo = max Y~ [Be(i, 5)| < max |Be(i,i)| + (n — 1)e,
i - %
J

since each of those sums involves n — 1 off-diagonal entries and each such entry is less than € in absolute
value. Further, B. is upper triangular and similar to A, hence

max | Be (i, 1)] = max{|u| : u € spec(A)} = p(A).

By assumption, p(A) < 1. This makes it possible to choose € positive yet so small that p(A) + (n — 1)e < 1.
With this choice, ||B:|l« < 1, hence limy_ o || B||%, = 0. Therefore, since ||V||oo and ||V} stay fixed
throughout, also ||A*||.c — 0 as k — co. In other words, A is convergent to 0.

With this, we are ready also to handle (i) and (ii). Both assume that all eigenvalues of A of modulus
1 are nondefective. By (11.5)Proposition, this implies the existence of a basis U = [V, W] for C" so that
V' consists of eigenvectors of A belonging to eigenvalues of modulus 1, while Z := ran W is A-invariant and
spec(A|z) has only eigenvalues of modulus < 1. In particular, AV = VM for some diagonal matrix M with
all diagonal entries of modulus 1, and AW = W B for some matrix B with spec(B) = spec(A|;), hence
p(B) < 1. Consequently, for any k,

APU = ARV, W] = [AFV, AFW] = [VM*, W B*] = U diag(M*, B).
In other words,
AR = U diag(M*, BMU L.

Therefore, || A¥|| oo < ||U||oo max{||M||%, || B¥||oo }|U ! ||c0, and this last expression converges since | M| = 1
while || B¥|l» — 0, by (iii). Since any convergent sequence is bounded, this implies that also the sequence
(]| A*|| ) must be bounded, hence we have finished the proof of (i).

Assume now, in addition, as in (ii) that all eigenvalues of A of modulus 1 are actually equal to 1. Then
M = id, and so, limy_.o, A*¥ = C := U diag(M, 0)U ! since A* — C = U diag(0, B¥)U~*, hence
1A% = Clloo < U lsoll B[l IU o < const|| B[|oc — 0

as k — oo. |
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118 11. Convergence of the power sequence

(11.11) Example: Here is a concrete example, chosen for its simplicity.

Let A = (1) ;} Then spec(A) = {1, a}. In particular, A is diagonable if o # 1 (by (10.9)Corollary)
since then A has two eigenvalues. On the other hand, if & = 1, then A is not diagonable since it then looks
like id, + N, with NV := [0, e1] the simplest example of a non-diagonable matrix. Also, in the latter case,

the sole eigenvalue, 1, is certainly defective since e is both in null(A — id) and in ran(A4 — id).

Also,
1 1—aF
o | ifa1;
Ak_|:1 1+oz+---+ak_1]_ [0 ak} if a7 1;

0 k
« [ (1) ]16 ] otherwise.

We see that A is powerbounded whenever |a] < 1 except when o = 1, i.e., except when there is a defective
absolutely largest eigenvalue.

Further, A is convergent iff |a| < 1, i.e., if, in addition, the sole eigenvalue of size 1 is equal to 1 and is
nondefective. o
The power method

The simple background for the success of the power method is the following corollary to (11.10)The-
orem (ii).

(11.12) Proposition: If A has just one eigenvalue p of absolute value p(A) and p is nondefective,
then, for almost any x and almost any y, the sequence

AFz/(yc AR ), k=1,2,...

converges to an eigenvector of A belonging to that absolutely maximal eigenvalue p. In particular, for
almost any vector y, the ratio
yCAkJrlCL'/yCAkiC

converges to p.

Proof: By assumption, there is (by (11.5)Proposition) a basis U := [V, W], with V a basis for the
space null(A — pid) of all eigenvectors of A belonging to that absolutely largest eigenvalue p of A, and
B := A| ., having all its eigenvalues < |u| in absolute value. This implies that p(B/u) < 1. Therefore,
for any x =: [V, W/(a,b),

AFz = p*Va+ B*Wb = ¥ (Va+ (B/p)*Wb)

and (B/u)*Wb — 0 as k — oo. Consequently, for any ,

y ARty Ry Va + y (B/pw)FTWE) g Va+y (B/p) Wb

AR Ry Va+ g (B/u) W)y Va+ yo(B/u)FWb

provided y“Va # 0. O

Note that the speed with which y¢A*+1z/ycA*2 converges to p depends on the speed with which
(B/uw)kWb — 0 as k — oo, hence, ultimately, on p(B/pu).

In the scaled power method, one would, instead, consider the sequence
Tpt1 = A(xg/l|zel]), k=0,1,...,
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The power method 119

or, more simply, the sequence
Tp41 = A(xk/ytxk)v k:()v]-a

The power method is at the heart of good algorithms for the calculation of eigenvalues. In particular,

the standard algorithm, i.e., the QR method, can be interpreted as a (very sophisticated) variant of the
power method.

11.6 Using MATLAB if really necessary, try out the Power method on the following matrices A, starting at the specified
vector x, and discuss success or failure. (Note: You can always use eig(A) to find out what the absolutely largest eigenvalue of
A is (as well as some eigenvector for it), hence can tell whether or not the power method is working for you. If it isn’t, identify

0o 2 .2 3
. 2 0 2 3 0 1 1 0
the source of failure.) (a) A = 5 40 4l 7= (1,1,1,1); (b) A= [71 0] , = (1,-1); (¢) A= [1 1} , T =er;
3 4 6 0
4 1 -1
(d) A= {2 5 2] ,x=(1,-2,—1).
1 1 2
11.7 T/F
(a) If the matrix A of order n has n eigenvalues, then none of its eigenvalues is defective.
(b) If, for some sequence (zn : n € IN) of m-vectors, limp—co [|Zn|2 = 0, then limn— oo [|@n|| = 0 for any norm | - || on ™.

)
)
(c) If all the eigenvalues of A are < 1, then limj,_, ., A¥ — 0.
) If all the eigenvalues of A are < 1 in absolute value, then A is power-bounded.
)

If p(A)z = 0 for some polynomial p, A € L(X) and = € X\{0}, then every eigenvalue of A is a zero of p.
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12. Canonical forms

Canonical forms exhibit essential aspects of a linear map. Of the three discussed in this chapter, only
the Schur form has practical significance. But the mathematics leading up to the other two is too beautiful
to be left out.

The only result from this chapter used later in these notes is the spectral theorem for hermitian matrices.

The Schur form

The discussion of the powers A¥ of A used crucially the fact that any square matrix is similar to an
upper triangular matrix. The argument we gave there for this fact is due to I. Schur, who used a refinement
of it to show that the basis V for which V1AV is upper triangular can even be chosen to be unitary or
orthonormal, i.e., so that

VeV = id.

(12.1) Schur’s theorem: Every A € L(C") is unitarily similar to an upper triangular matrix, i.e.,
there exists a unitary basis U for C™ so that A:=U"YAU = U°AU is upper triangular.

Proof: Simply repeat the proof of (10.25)Theorem, with the following modifications: Normalize
the eigenvector uq, i.e., make it have (Euclidean) length 1, then extend it to an o.n. basis for C™ (as can
always be done by applying Gram-Schmidt to an arbitrary basis [uq,...] for C™). Also, observe that unitary
similarity is also an equivalence relation since the product of unitary matrices is again unitary. Finally, if
W is unitary, then so is diag(1, W). O

Here is one of the many consequences of Schur’s theorem. It concerns hermitian matrices, i.e., matrices
A for which A° = A. By Schur’s theorem, such a matrix, like any other matrix, is unitarily similar to an
upper triangular matrix, i.e., for some unitary matrix U , A := U°AU is upper triangular. On the other
hand, for any matrix A and any unitary matrix U,

(UCAU)® = US(A)U.

In other words: if A is the matrix representation for A with respect to a wnitary basis, then A° is the
matrix representation for A® with respect to the very same basis. For our hermitian matrix A with its
upper triangular matrix representation A = U°AU with respect to the unitary basis U, this means that also
A¢ = A, i.e., that the upper triangular matrix A is also lower triangular and that its diagonal entries are all
real. This proves the hard part of the following remarkable

(12.2) Corollary: A matrix A € C" is hermitian if and only it is unitarily similar to a real diagonal
matrix.

Proof: We still have to prove that if A := U°AU is real and diagonal for some unitary U, then A is
necessarily hermitian. But that follows at once from the fact that then A® = A, therefore A° = (UAU®)® =
UAU® = UAU® = A. =

A slightly more involved argument makes it possible to characterize all those matrices that are unitarily
similar to a diagonal matrix (real or not). Such a matrix has enough eigenvectors to make up an entire
orthonormal basis from them. Here are the details.

Start with the observation that diagonal matrices commute with one another. Thus, if A= U°AU is
diagonal, then

A°A = (UAUS)(UAU®) = UACAUC = UAAU® = (UAU®)(UAUC) = AA,
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