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also A is invertible. This proves

(13.4) Proposition: Any diagonally dominant matrix is invertible.

In particular, the first of the three matrices in (13.3) we now know to be invertible. As it turns out, the
other two are also invertible; thus, diagonal dominance is only sufficient but not necessary for invertibility.
Equivalently, a noninvertible matrix cannot be diagonally dominant.

In particular, for (A − µ id) to be not invertible, it must fail to be diagonally dominant, i.e.,

(13.5) ∃i |A(i, i) − µ| ≤
∑
j 6=i

|A(i, j)|.

This gives the famous

(13.6) Gershgorin Circle Theorem: The spectrum of A ∈ Cn×n is contained in the union of circles

Bri(A(i, i)) := {z ∈ C : |A(i, i) − z| ≤ ri :=
∑
j 6=i

|A(i, j)|}, i = 1:n.

For the three matrices in (13.3), this says that

spec(
[

2 −1
2 3

]
) ⊂ B1(2)∪B2(3) spec(

[−2 −1
3 3

]
) ⊂ B1(−2)∪B3(3) spec(

[−2 −1
4 3

]
) ⊂ B1(−2)∪B4(3).

More than that, according to a refinement of the Gershgorin Circle Theorem, the second matrix must have
one eigenvalue in the ball B1(−2) and another one in the ball B3(3), since these two balls have an empty
intersection. By the same refinement, if the third matrix has only one eigenvalue, then it would necessarily
have to be the point −1, i.e., the sole point common to the two balls B1(−2) and B4(3).

The trace of a linear map

Recall that the trace of a square matrix A is given by

trace(A) =
∑

j

A(j, j).

Further, as already observed in (6.27), if the product of the two matrices B and C is square, then

(13.7) trace(BC) =
∑

j

∑
k

B(j, k)C(k, j) =
∑
jk

B(j, k)C(k, j) = trace(CB).

Hence, if A = V ÂV −1, then

trace(A) = trace(V (ÂV −1)) = trace(ÂV −1V ) = trace Â.

This proves
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130 13. Localization of eigenvalues

(13.8) Proposition: Any two similar matrices have the same trace.

This permits the definition of the trace of an arbitrary linear map A on an arbitrary finite-dimensional
vector space X as the trace of the matrices similar to it. In particular, trace(A) equals the sum of the
diagonal entries of any Schur form for A, i.e., trace(A) is the sum of the eigenvalues of A, however with some
of these eigenvalues possibly repeated.

For example, trace( idn) = n, while spec( idn) = {1}.
Offhand, such eigenvalue multiplicity seems to depend on the particular Schur form (or any other

triangular matrix representation) for A. But, since all of these matrices have the same trace, you will not
be surprised to learn that all these triangular matrix representations for A have each eigenvalue appear on
its diagonal with exactly the same multiplicity. This multiplicity of µ ∈ spec(A) is denoted

#aµ

and is called the algebraic multiplicity of the eigenvalue, and is readily identified as the dimension of
∪r null(A − µ id)r. Further, the polynomial

χ
A

:=
∏

µ∈spec(A)

(· − µ)#aµ

is the much-studied characteristic polynomial for A.
It would not take much work to validate all these claims directly. But I prefer to obtain them along

more traditional lines, namely via determinants.

Determinants

The determinant is, by definition, the unique multilinear alternating form

det : [a1, . . . , an] → IF

for which

(13.9) det( idn) = 1.

Here, multilinear means that det is linear in each of its n arguments, i.e.,

(13.10) det[. . . , a + αb, . . .] = det[. . . , a, . . .] + α det[. . . , b, . . .].

(Here and below, the various ellipses . . . indicate the other arguments, the ones that are kept fixed.) Further,
alternating means that the interchange of two arguments reverses the sign, i.e.,

det[. . . , a, . . . , b, . . .] = − det[. . . , b, . . . , a, . . .].

In particular, detA = 0 in case two columns of A are the same, i.e.,

det[. . . , b, . . . , b, . . .] = 0.

Combining this last with (13.10), we find that

det[. . . , a + αb, . . . , b, . . .] = det[. . . , a, . . . , b, . . .],
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i.e., addition of a scalar multiple of one argument to a different argument does not change the determinant.
In particular, if A = [a1, a2, . . . , an] is not invertible, then detA = 0 since then there must be some

column aj of A writable as a linear combination of other columns, i.e.,

detA = det[. . . , aj , . . .] = det[. . . , 0, . . .] = 0,

the last equality by the multilinearity of the determinant.
Conversely, if A is invertible, then detA 6= 0, and this follows from the fundamental determinantal

identity

(13.11) det(AB) = det(A) det(B)

since, for an invertible A,
1 = det( idn) = det(AA−1) = det(A) det(A−1),

the first equality by (13.9).

(13.12) Theorem: For all A ∈ Cn×n, spec(A) = {µ ∈ C : det(A − µ id) = 0}.

Of course, this theorem is quite useless unless we have in hand an explicit formula for the determinant.
Here is the standard formula:

(13.13) det[a1, a2, . . . , an] =
∑
i∈SSn

(−)i
∏
j

aj(i(j))

in which the sum is over all permutations of order n, i.e., all 1-1 (hence invertible) maps i : {1, . . . , n} →
{1, . . . , n}, and the number (−)i is 1 or −1 depending on the parity of the number of interchanges it takes
to bring the sequence i back into increasing order.

For n = 1, we get the trivial fact that, for any scalar a, spec([a]) = {a}.
For n = 2, (13.12) implies that

spec(
[

a b
c d

]
) = {µ ∈ C : (a − µ)(d − µ) = bc}.

For n = 3, we get

spec(


 a b c

d e f
g h i


) = {µ ∈ C : p(µ) = 0},

with
p(µ) := (a − µ)(e − µ)(i − µ) + bfg + chd − c(e − µ)g − (a − µ)fh − bd(i − µ).

For n = 4, (13.13) already involves 24 summands, and, for general n, we have n! = 1 · 2 · · ·n summands.
Thus, even with this formula in hand, the theorem is mostly only of theoretical interest since already for
modest n, the number of summands involved becomes too large for any practical computation.

In fact, the determinant det A of a given matrix A is usually computed with the aid of some factorization
of A, relying on the fundamental identity (13.11) and on the following

(13.14) Lemma: The determinant of any triangular matrix is just the product of its diagonal entries.

Proof: This observation follows at once from (13.13) since any permutation i other than the identity
(1, 2, . . . , n) must have i(k) < k for some k, hence the corresponding product

∏
j aj(i(j)) in (13.13) will be

zero for any lower triangular matrix. Since any such i must also have i(h) > h for some h, the corresponding
product will also vanish for any upper triangular matrix. Thus, in either case, only the product

∏
j aj(j) is

possibly nonzero.
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132 13. Localization of eigenvalues

So, with A = PLU as constructed by Gauss-elimination, with L unit lower triangular and U upper
triangular, and P a permutation matrix, we have

detA = (−)P
∏
j

U(j, j),

with the number (−)P equal to 1 or −1 depending on the parity of the permutation carried out by P , i.e.,
whether the number of row interchanges made during Gauss elimination is even or odd.

Formula (13.13) is often taken as the definition of det A. It is a simple consequence of the fundamen-
tal identity (13.11), and the latter follows readily from the multilinearity and alternation property of the
determinant. For these and other details, see the chapter ‘More on determinants’.

Annihilating polynomials

The nontrivial polynomial p is called annihilating for A ∈ L(X) if p(A) = 0.
For example, A is nilpotent exactly when, for some k, the monomial ()k annihilates A, i.e., Ak = 0.

As another example, A is a linear projector (or, idempotent) exactly when the polynomial p : t 7→ t(t − 1)
annihilates A, i.e., A2 = A.

Annihilating polynomials are of interest because of the following version of the Spectral Mapping
Theorem:

(13.15) Theorem: For any polynomial p and any linear map A ∈ L(X) with IF = C,

spec(p(A)) = p(spec(A)) := {p(µ) : µ ∈ spec(A)}.

Proof: If µ ∈ spec(A), then, for some nonzero x, Ax = µx, therefore also p(A)x = p(µ)x, hence
p(µ) ∈ spec(p(A)). In other words, p(spec(A)) ⊂ spec(p(A)).

Conversely, if ν ∈ spec(p(A)), then p(A) − ν id fails to be 1-1. However, assuming without loss of
generality that p is a monic polynomial of degree r, we have p(t) − ν = (t − µ1) · · · (t − µr) for some scalars
µ1, . . . , µr, therefore

p(A) − ν id = (A − µ1 id) · · · (A − µr id),

and, since the left-hand side is not 1-1, at least one of the factors on the right must fail to be 1-1. This says
that some µj ∈ spec(A), while p(µj) − ν = 0. In other words, spec(p(A)) ⊂ p(spec(A)).

In particular, if p annihilates A, then p(A) = 0, hence spec(p(A)) = {0}, therefore spec(A) ⊂ {µ ∈ C :
p(µ) = 0}.

For example, 0 is the only eigenvalue of a nilpotent linear map. The only possible eigenvalues of an
idempotent map are the scalars 0 and 1.

The best-known annihilating polynomial for a given A ∈ IFn×n is its characteristic polynomial, i.e., the
polynomial

χ
A

: t 7→ det(t idn − A).

To be sure, by (10.25), we can write any such A as the product A = V ÂV −1 with Â upper triangular.
Correspondingly,

χ
A
(t) = detV det(t idn − Â)(det V )−1 = det(t idn − Â) = χ

Â
(t) =

∏
j

(t − Â(j, j)),

the last equation by (13.14)Lemma. Consequently, χ
A
(A) = V χ

A
(Â)V −1, with

χ
A
(Â) = (Â − µ1 id) · · · (Â − µn id), µj := Â(j, j), j = 1:n,
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The multiplicity of an eigenvalue 133

and this, we claim, is necessarily the zero map, for the following reason: The factor (Â − µj id) is upper
triangular, with the jth diagonal entry equal to zero. This implies that, for each i, (Â − µj id) maps

Ti := ran[e1, . . . , ei]

into itself, but maps Tj into Tj−1. Therefore

ranχ
A
(Â) = χ

A
(Â)Tn = (Â − µ1 id) · · · (Â − µn id)Tn

⊂ (Â − µ1 id) · · · (Â − µn−1 id)Tn−1

⊂ (Â − µ1 id) · · · (Â − µn−2 id)Tn−2

. . .

⊂ (Â − µ1 id)T1 ⊂ T0 = {0},

or, χ
A
(Â) = 0, therefore also χ

A
(A) = 0. This is known as the Cayley-Hamilton Theorem.

Note that the collection IA := {p ∈ Π : p(A) = 0} of all polynomials that annihilate a given linear map
A is an ideal, meaning that it is a linear subspace that is also closed under multiplication by polynomials:
if p ∈ IA and ∈ Π, then their product qp : t 7→ q(t)p(t) is also in Since IA is not empty, it contains a monic
polynomial of minimal degree. This polynomial is called the minimal polynomial for A and is denoted
by pA. Using the Euclidean algorithm (see Backgrounder), it is easy to see pA must be a factor of every
p ∈ IA; in technical terms, IA is a principal ideal.

In exactly the same way, the collection IA,x := {p ∈ Π : p(A)x = 0} is seen to be a principal ideal, with
pA,x the unique monic polynomial of smallest degree in it. Since IA ⊂ IA,x, it follows that pA,x must be a
factor for any p ∈ IA and, in particular, for χ

A
.

13.1 (a) Prove: If the minimal annihilating polynomial p = pA,x of the linear map A ∈ L(X) at some x ∈ X\0 has degree

equal to dimX, then pA,x(A) = 0. (b) Prove that the spectrum of the companion matrix (see H.P. ( “hwcompanion )) of the
monic polynomial p equals the zero set of p.

13.2 make one about the coefs of char.pol. being symmetric functions of evs, and one about the ith coeff. being the sum

of the n − ith principal minors. all of these, including the trace, are invariant under similarity.

The multiplicity of an eigenvalue

Since χ
A

is of exact degree n in case A ∈ Cn, χ
A

has exactly n zeros counting multiplicities. This means
that

χ
A
(t) = (t − µ1) · · · (t − µn)

for a certain n-sequence µ. Further,
spec(A) = {µj : j = 1:n},

and this set may well contain only one number, as it does when A = 0 or A = id. However, it is customary to
associate with each eigenvalue, µ, its algebraic multiplicity, #aµ, which, by definition, is its multiplicity
as a zero of the characteristic polynomial, or, equivalently as we saw, as a diagonal entry of any triangular
matrix similar to A. For example, the matrix idn has only the eigenvalue 1, but it has algebraic multiplicity
n. In this way, each A ∈ Cn×n has n eigenvalues counting algebraic multiplicity.

I have been saying ‘algebraic multiplicity’ rather than just ‘multiplicity’, since there is a second way
of counting eigenvalues, and that is by geometric multiplicity. The geometric multiplicity, #gµ, of the
eigenvalue µ for A is, by definition, the dimension of the space of corresponding eigenvectors, i.e.,

#gµ := dimnull(A − µ id).

For the sole eigenvalue, 1, of idn, algebraic and geometric multiplicity coincide. In contrast, the sole

eigenvalue, 0, of
[

0 1
0 0

]
, has algebraic multiplicity 2 but its geometric multiplicity is only 1.
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134 13. Localization of eigenvalues

An eigenvalue is (algebraically or geometrically) simple if it has (algebraic or geometric) multiplicity
1.

13.16 Proposition: For any eigenvalue, the algebraic multiplicity is no smaller than the geometric
multiplicity, with equality if and only if the eigenvalue is not defective.

13.3

(i) Prove that the multiplicity with which an eigenvalue µ of A appears as a diagonal entry of a triangular matrix T similar
to A is the same for all such triangular matrices. (Hint: Prove that it equals the multiplicity of µ as a zero of the
characteristic polynomial χ

A
: t 7→ det(t idn − A) of A; feel free to use what we proved about determinants, like:

det(AB) = det(A) det(B), and det(T ) =
∏

j
T (j, j).)

(ii) Determine the algebraic and geometric multiplicities for all the eigenvalues of the following matrix. (Read off the eigen-
values; use elimination to determine geometric multiplicities.)

A :=




1 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 3 0 1
0 0 0 0 3 1
0 0 0 0 0 3




Perron-Frobenius

We call the matrix A positive (nonnegative) and write A > 0 (A ≥ 0) in case all its entries are
positive (nonnegative). A positive (nonnegative) matrix A of order n maps the positive orthant

IRn
+ := {y ∈ IRn : y ≥ 0}

into its interior (into itself). Thus the (scaled) power method, started with a nonnegative vector, would
converge to a nonnegative vector if it converges. This suggests that the absolutely largest eigenvalue for
a nonnegative matrix is nonnegative, with a corresponding nonnegative eigenvector. The Perron-Frobenius
theorem makes this intuition precise.

Since A maps IRn
+ into itself, it makes sense to consider, for given y ∈ IRn

+\0, scalars α for which Ay ≥ αy
(in the sense that (Ay)j ≥ αyj , all j), i.e., for which Ay−αy ≥ 0. The largest such scalar is the nonnegative
number

r(y) := min{(Ay)j/yj : yj > 0}, y ∈ IRn
+\0.

The basic observation is that

(13.17) Ay − αy > 0 =⇒ r(y) > α.

The function r so defined is scale-invariant, i.e., r(αy) = r(y) for all α > 0, hence r takes on all its values
already on the set S+ := {y ≥ 0 : ‖y‖ = 1}. At this point, we need, once again, a result that goes beyond
the scope of these notes, namely the fact that S+ is compact, while r is continuous at any y > 0 and upper
semicontinuous at any y ≥ 0, hence r takes on its supremum over IRn

+\0 at some point in S+. I.e., there
exists x ∈ S+ for which

µ := r(x) = sup r(S+) = sup r(IRn
+\0).

Assume now, in addition to A ≥ 0, that also p(A) > 0 for some polynomial p.
Claim: Ax = µx.
Proof: Assume that Ax 6= µx. Since µ = r(x), we have Ax−µx ≥ 0, therefore A(p(A)x)−µp(A)x =

p(A)(Ax − µx) > 0, hence, by (13.17), r(p(A)x) > µ = sup r(S+), a contradiction.
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Claim: x > 0.
Proof: Since 0 6= x ≥ 0 and p(A) > 0, we have p(µ)x = p(A)x > 0, hence x > 0.

Consequence: x is the unique maximizer for r.

Proof: If also r(y) = µ for some y ∈ S+, then by the same argument Ay = µy, therefore Az = µz
for all z = x + α(y − x), and each of these z must be positive if it is nonnegative, and this is possible only if
y − x = 0.

Consequence: For any eigenvalue ν of any matrix B with eigenvector y, if |B| ≤ A, then |ν| ≤ µ, with
equality only if | y/‖y‖ | = x and |B| = A. (More precisely, equality implies that B = exp(iϕ)DAD−1, with
D := diag(. . . , yj/|yj|, . . .) and exp(iϕ) := ν/|ν|.)

Proof: Observe that

(13.18) |ν||y| = |By| ≤ |B| |y| ≤ A|y|,

hence |ν| ≤ r(|y|) ≤ µ. If now there is equality, then, by the uniqueness of the minimizer x (and assuming
without loss that ‖y‖ = 1), we must have |y| = x and equality throughout (13.18), and this implies |B| = A.
More precisely, D := diag(. . . , yj/|yj |, . . .) is then well defined and satisfies y = D|y|, hence C|y| = µ|y| =
A|y|, with C := exp(−iϕ)D−1BD ≤ A and ν =: µ exp(iϕ), therefore C = A.

Consequences. By choosing B = A, we get that µ = ρ(A) := max{|ν| : ν ∈ σ(A)}, and that µ has
geometric multiplicity 1 (as an eigenvalue of A).

We also get that ρ(A) is strictly monotone in the entries of A, i.e., that ρ(Â) > ρ(A) in case Â ≥ A 6= Â

(using the fact that p(A) > 0 and Â ≥ A implies that also q(Â) > 0 for some polynomial q; see below).
As a consequence, we find computable upper and lower bounds for the spectral radius of A:
Claim:

∀{y > 0} r(y) ≤ ρ(A) ≤ R(y) := max
j

(Ay)j/yj,

with equality in one or the other if and only if there is equality throughout if and only if y = αx (for some
positive α). In particular, ρ(A) is the only eigenvalue of A with positive eigenvector.

Proof: Assume without loss that ‖y‖ = 1. We already know that for any such y > 0, r(y) ≤ ρ(A)
with equality if and only if y = x. For the other inequality, observe that R(y) = ‖D−1ADe‖∞ with
D := diag(. . . , yj , . . .) and e := (1, . . . , 1). Since D−1AD ≥ 0, it takes on its max-norm at e, hence

R(y) = ‖D−1AD‖∞ ≥ ρ(D−1AD) = ρ(A).

Now assume that r(y) = R(y). Then Ay = r(y)y, hence r(y) ≤ r(x) = ρ(A) ≤ R(y) = r(y), therefore
equality must hold throughout and, in particular, y = x.

If, on the other hand, r(y) < R(y), then we can find Â 6= A ≤ Â so that Ây = R(y)y (indeed, then
z := R(y)y −Ay is nonnegative but not 0, hence Â := A + y−1

1 [z]e1
t does the job) therefore r

Â
(y) = R(y) =

R
Â
(y), hence R(y) = ρ(Â) > ρ(A).

Claim: µ has simple algebraic multiplicity.

Proof: Since we already know that µ has simple geometric multiplicity, it suffices to show that µ is
not a defective eigenvalue, i.e., that null(A − µ id) ∩ ran(A − µ id) = {0}. So assume to the contrary that
Ay − µy is an eigenvector of A belonging to µ. Then, by the simple geometric multiplicity of µ, we may
assume without loss that Ay − µy = x, or Ay = µy + x, therefore, for all k, Aky = µky + kµk−1x, hence,
finally,

(A/µ)ky = y + k(x/µ).

Hence, for large enough k, z := (A/µ)ky has all its entries positive, and Az = Ay + kx = µy + (k + 1)x =
µ(z + x/µ) > µz, therefore r(z) > µ, a contradiction.
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The collection of these claims/consequences constitutes the Perron-Frobenius Theorem. Oskar
Perron proved all this under the assumption that A > 0 (i.e., p(t) = t). Frobenius extended it to all A ≥ 0
that are irreducible. While this term has some algebraic and geometric meaning (see below), its most
convenient definition for the present purpose is that p(A) > 0 for some polynomial p. In the contrary case, A
is called reducible, and not(iv) below best motivates such a definition. Here are some equivalent statements:

Claim: Let A ≥ 0. Then the following are equivalent:

(i) p(A) > 0 for some polynomial p.

(ii) For all (i, j), there exists k = k(i, j) so that Ak(i, j) > 0.

(iii) No proper A-invariant subspace is spanned by unit-vectors.

(iv) For no permutation matrix P is

(13.19) PAP−1 =
[

B C
0 D

]

with B, D square matrices of positive order.

(v) The directed graph for A is strongly connected.

Proof: (ii)=⇒(i) since then p(A) :=
∑

i,j Ak(i,j) > 0.

If (ii) does not hold, then there exists (i, j) so that Ak(i, j) = 0 for all k. But then also p(A)(i, j) = 0 for
all polynomials p; in other words, (i)=⇒(ii). Further, it says that the set J := J(j) := {r : ∃{k} Ak(r, j) 6= 0}
is a proper subset of {1, . . . , n} (since it doesn’t contain i), but neither is it empty ( since it contains j, as
A0(j, j) 6= 0). Since Ak+`(r, j) =

∑
m Ak(r, m)A`(m, j), it follows that J(m) ⊂ J(j) for all m ∈ J(j).

This implies, in particular, that A(r, m) = 0 for all r 6∈ J(j), m ∈ J(j), hence that span(em)m∈J(j) is a
proper A-invariant subspace, thus implying not(iii). It also implies not(iv), since it shows that the columns
A(:, m), m ∈ J(j), have zero entries in rows r, r 6∈ J(j), i.e., that (13.19) holds for the permutation P =
[(em)m∈J(j), (er)r 6∈J(j)], with both B and D of order < n.

Conversely, if e.g., (iii) does not hold, and span(em)m∈J(j) is that proper A-invariant subspace, then it
is also invariant under any p(A), hence also p(A)(r, m) = 0 for every r 6∈ J(j), m ∈ J(j), i.e., (i) does not
hold.

The final characterization is explicitly that given by Frobenius, – except that he did not formulate it
in terms of graphs; that was done much later, by Rosenblatt (1957) and Varga (1962). Frobenius (???)
observed that, since

Ak(i, j) =
∑
j1

· · ·
∑
jk−1

A(i, j1) · · ·A(jk−1, j),

therefore, for i 6= j, Ak(i, j) 6= 0 if and only if there exists some sequence i =: i0, i1, . . . , ik−1, ik := j so that
A(ir, ir+1) 6= 0 for all r. Now, the directed graph of A is the graph with n vertices in which the directed
edge (i, j) is present iff A(i, j) 6= 0. Such a graph is called strongly connected in case it contains, for
each i 6= j, a path connecting vertex i with vertex j, and this, as we just observed, is equivalent to having
Ak(i, j) 6= 0 for some k > 0. In short, (ii) and (v) are equivalent.

There are various refinements of this last claim available. For example, in testing whether the directed
graph of A is strongly connected, we only need to check paths involving distinct vertices, and such paths
involve at most n vertices. Hence, in condition (ii), we need to check only for k < n. But, with that
restriction, (ii) is equivalent to having idn + A + · · · + An−1 > 0 and, given that A ≥ 0, this, in turn, is
equivalent to having ( idn + A)n−1 > 0, i.e., to having (i) hold for quite specific polynomials.

13.4 T/F

() If the sum A + B of two matrices is defined, then det(A + B) = det(A) + det(B).
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