Rotation in 3-space 137

14. Some applications

3-space

In the vector space X = IR®, the standard inner product is also called the dot product, because of the
customary notation
y'o=(r,y) =x-y, w,yclR’

In this most familiar vector space, another vector ‘product’ is of great use, the so-called cross product
x X y. It is most efficiently defined implicitly, i.e., by

(14.1) (x X y) - z:= det[z, y, 2], Vz,y,z € RR®.
From (13.13) (see also page 163), we work out that
detlz,y, z] = (2(2)y(3) — x(3)y(2))z(1) + (xB)y(1) — z(1)y(3))2(2) + (x(1)y(2) — 2(2)y(1))z(3),

hence
zxy=(2(2)y(3) —z(3)y(2), z(3)y(1) — x()y(3), z(1)y(2) — z(2)y(1)).

Given what you already know about determinants, the definition (14.1), though implicit, makes all the

basic facts about the cross product immediate:

(i) The cross product x X y is linear in its two arguments, x and y.
(ii) The cross product x x y is alternating, meaning that y x x = —(x X y).
(iii) Perhaps most importantly, x x y is a vector perpendicular to both x and y.
(iv) x y =0 if and only if [x,y] is not 1-1.

Indeed, if [z,y] is 1-1, then we can always extend it to a basis [z,y, z] for IR®, and then (z x y)tz is

not zero, hence then x x y # 0. If [z,y] fails to be 1-1, then, for any z, [z,y, 2] fails to be 1-1, hence then,
necessarily, z X y = 0.

So, assuming that [x,y] is 1-1, we can compute the unit vector

ui=(z xy)/llzxyl,

and so conclude that
[x y|3 = det[z,y,z x y] = ||z x y|| det[z,y,u].

In other words,
(v) the Euclidean length of x x y gives the (unsigned) area of the parallelepiped spanned by = and y.
This also holds when [z, y] fails to be 1-1 since then that area is zero.

When [z,y] is 1-1, then there are exactly two unit vectors (or, directions) perpendicular to the plane
ran[z, y] spanned by z and y, namely u := (z X y)/||z x y|| and (y x x)/|ly X z|| = —u, with u the choice
that makes det(z,y,u) positive. If you imagine the thumb of your right hand to be x, and the pointer of
that hand to be y, then the middle finger, bent to be perpendicular to both thumb and pointer, would be
pointing in the direction of & x y. For that reason, any basis [z, v, z] for IR® with det[x,y,2] > 0 is said to
be right-handed.

14.1 Relate the standard choice (z2,—z1) for a vector perpendicular to the 2-vector = to the above construction.

14.2 Give a formula for an n-vector x1 X - -+ X x,—1 that is perpendicular to the n — 1 n-vectors z1,...,x,—1 and whose

Euclidean length equals the (unsigned) volume of the parallelepiped spanned by the vectors z1,...,Zn—1.

19aug02 (©2002 Carl de Boor

138 14. Some applications

Rotation in 3-space

A particularly useful transformation of 3-space is counter-clockwise rotation by some angle 6 around
some given axis-vector a. Let R = Ry, be this rotation. We are looking for a computationally efficient way
to represent this map.

This rotation leaves its axis, i.e., ran[a], pointwise fixed, and rotates any vector in the plane H := a*

counterclockwise 6 radians. In other words, with

p=q+r, q:=PFqgp, r:=p—gq,

we have
Rp = q+ Rr,

by the linearity of the rotation. To compute Rr, let s be the vector in H obtained by rotating r counter-
clockwise 7/2 radians. Then

Rr = cos()r + sin(d)s,

and that’s it.

(14.2) Figure. Rotation of the point p counterclockwise 6 radians around
the axis spanned by the vector a. The orthogonal projection r of p into
the plane H with normal a, together with its rotation s counterclockwise
/2 radians around that axis, serve as a convenient orthogonal coordinate
system in H.

It remains to construct s, and this is traditionally done with the aid of the cross product
a X r:= (agrs — asra, asry — a3, a172 — A1)

of a with r. Check the chapter on determinants for the source of this vector. It is easy to verify directly that
a X r is a vector perpendicular to a, hence also to r since, after all, r x a = —(a x r), and that, for a L r, we
have |la x r||? = ||a||?||7||?>. Hence, assuming without loss that a is normalized, we now know that a x r is
in the plane H and perpendicular to r and of the same length as r. Of the two vectors in H that have this
property, it also happens to be the one obtained from r by a (7/2)-rotation that appears counterclockwise
when looking down on H from the side that the vector a points into. (Just try it out.)

19aug02 (©2002 Carl de Boor

An example from CAGD 139
The calculations can be further simplified. The map
r—axr
is linear and, by inspection, a x @ = 0. Since a is normalized by assumption, we compute
r=p— (a‘p)a,

hence
axr=axp.

So, altogether
Rp = (a*p)a + cos(#)(p — (a'p)a) + sin(#)(a x p) = cos(d)p + (1 — cos(#))(a'p)a + sin(8)(a x p).

This is the formula that is most efficient for the calculation of Rp. However, if the matrix for R = Rid,
(with respect to the natural basis) is wanted, we read it off as

R = cos(#) id; + (1 — cos(#))[a][a]® + sin(8)(ax),

with
0 —as a9
ax = as 0 —aq
—ag al 0

the matrix for the linear map r — a X r.

Markov Chains

Recall our example of a random walk on some graph. There we were interested in the matrices M*,
k=1,2,3,..., with the entries of the square matrix M all nonnegative and all entries in any particular row
adding up to 1. In other words, M > 0 and Me = e, with

e:=(1,1,...,1).
In particular, 1 € spec(M). Further, since | M|l = 1, we conclude from (13.1) that p(M) < 1. Hence,
1 is an absolutely largest eigenvalue for M. Assume, in addition, that M is irreducible. This is certainly
guaranteed if M > 0. Then, by the Perron-Frobenius theory, 1 is a nondefective eigenvalue of M, and is the
unique absolutely largest eigenvalue. By (11.10)Theorem, this implies that M is convergent. In fact, since 1
is a nondefective simple eigenvalue of M with corresponding eigenvector e, there is a basis V' = [e, W], with
W a basis for ran(M — id), hence
MV =[e, MW] =V diag(1, B)
for some B with p(B) < 1. Therefore,

M*V =V diag(1, B¥)

V diag(1,0).

k—o00

In other words,
lim M* = eut,

k—oo

with Mty = u, ie., u is an eigenvector of M* belonging to the eigenvalue 1. In particular, all rows of M*
converge to this particular nonnegative vector whose entries sum to 1.

19aug02 (©2002 Carl de Boor

140 14. Some applications

An example from CAGD

In Computer-Aided Geometric Design, one uses repeated corner-cutting to refine a given polygon into a
smooth curve of approximately the same shape. The best-known example is the Chaikin algorithm. This
algorithm consists in applying repeatedly, until satisfied, the following step:

input: the vertices x1,z2,...,Zpn, Tpt1 (=21 € IR? of a closed polygon.
for j =1:n, do: y2j_1 «— (3z; + xj+1)/4; y2; — (x; + 3zj11)/4; enddo

output: the vertices y1,¥2,...,Y2n, Y2nt+1 ‘= Y1 € R? of a closed polygon that is inscribed into the
input polygon.

In other words,

[yla"'7y2n]:[xlw"vxn]cn;
with C,, the n x (2n)-matrix
(3 1. 0 0 0 0 1 3 7
133100 0 0
001 3 3 1 0 0
c..—0 000 1 3 00 |4
0 0 0 0O 0
LOO O 0 0 O 3 1

It is possible to show that, as k — oo, the polygon with vertex sequence

[atgk), 2 Ji=lz1,.. ., 2n]CnCan -~ Oy,

»Vokn

converges to a smooth curve, namely the curve
t Y x;By(t —j),
J

with Bs a certain smooth piecewise quadratic function, a so-called quadratic B-spline (whatever that may
be).

Here, we consider the following much simpler and more radical corner-cutting:

(Y1, Yn]) = [T1,. .., 0] A,

with
10 0 0 17
1 10 0 0
0 1 1 0 0
(14.3) A=|0 01 0 0f /2
00 0 10
L0 0 0 1 1]

In other words, the new polygon is obtained from the old by choosing as the new vertices the midpoints of
the edges of the old.

Simple examples, hand-drawn, quickly indicate that the sequence of polygons, with vertex sequence
k
[mg), e ,xglk)] = [r1,...,2,] A"

19aug02 (©2002 Carl de Boor

An example from CAGD 141

seem to shrink eventually into a point. Here is the analysis that this is, in fact, the case, with that limiting
point equal to the average, > 5 T5 /n, of the original vertices.

(i) The matrix A, defined in (14.3), is a circulant, meaning that each row is obtainable from its
predecessor by shifting everything one to the right, with the right-most entry in the previous row becoming
the left-most entry of the current row. All such matrices have eigenvectors of the form

uy = (A A% A,
with the scalar A chosen so that A = 1, hence A**! = . For our A, we compute
Auy = (A" + AN 22 T 1) /2.
Hence, if A™ =1, then

14+ A

Aux = =3

Uy-
(ii) The equation A™ = 1 has exactly n distinct solutions, namely the n roots of unity
\j 1= exp(2mij/n) = w?, j=1lmn.

Here,
w = wy = exp(2wi/n)

is a primitive nth root of unity. Note that
w=1/w.

Let
V=[v1,...,0n] := [urg,---,un,]

be the column map whose jth column is the eigenvector

v = (W, W, W)
of A, with corresponding eigenvalue
1+ _; .
i = T]] =(w7+1)/2, j=1ln.

Since these eigenvalues are distinct, V' is 1-1 (by (10.8)Lemma), hence V is a basis for C". In particular,
A =Vdiag(...,u;,.. GV
(iii) It follows that
AF =V diag(...,pf,..)V 54— Vdiag(0,...,0,1)V "

since |p;| < 1 for j < n, while p,, = 1. Hence

lim A% =0,V ~"1(n,:).

k—oo
(iv) In order to compute V~=1(n,:), we compute V°V (recalling that @™ = w™1):
n n
(VV) (4, k) = v, = Zw—m Wk — Zwuﬁ—m.
r=1 r=1

19aug02 (©2002 Carl de Boor

142 14. Some applications

That last sum is a geometric series, of the form Z:=1 V" with v := w*™7, hence equals n in case k = j, and
otherwise v # 1 and the sum equals (v"*! —v)/(v —1) = 0 since " = 1, hence ™" — v = 0. It follows that

VeV =nid,,
i.e., V/\/n is unitary, i.e., an o.n. basis for C". In particular, V! = V¢/n, therefore
Vl(n,:) = v,5/n.
(v) Tt follows that
lim A* = (1/n)v,v,,°,
k—o00
with
v =(1,1,...,1).
Consequently,

k—o0

. k c
lim [,:cg),] = ij/nvn = [...,ij/n,...],
J J

i.e., the rank-one matrix all of whose columns equal the average > 5 Zj /m of the vertices of the polygon we
started out with.

Tridiagonal Toeplitz matrix

Circulants are a special case of Toeplitz matrices, i.e., of matrices that are constant along diagonals.
Precisely, the matrix A is Toeplitz if
A(Za]) = Qij—j, Vivj,
for some sequence (...,a_2,a_1,a9,a1,asz,...) of appropriate domain. Circulants are special in that the
determining sequence a for them is periodic, i.e., aj+n, = a4, all 7, if A is of order n.

Consider now the case of a tridiagonal Toeplitz matrix A. For such a matrix, only the (main) diagonal
and the two next-to-main diagonals are (perhaps) nonzero; all other entries are zero. This means that only
a_1, ag, ai are, perhaps, nonzero, while a; = 0 for |i| > 1. If also a_1 = a1 # 0, then the circulant trick,
employed in the preceding section, still works, i.e., we can fashion some eigenvectors from vectors of the form
uy = (AL,...,;A"). Indeed, now

aoX + a1 N2 for j =1;
(Aur)j = ¢ ey Nt +agV +a Mt for j = 2in—1;
A A"+ g\ for j =n.

Hence,
Auy = (a1 /X4 ag + arN)uy —ai(er +)\"Hen).

At first glance, this doesn’t look too hopeful since we are after eigenvectors. However, recall that, for a
unimodular A, i.e., for A = expip for some real ¢, we have 1/\ = A, hence

AUX = (al//\ +ag + al)\)ux — a1(61 +)\"+16n).
It follows that, by choosing A as an (n + 1)st root of unity, i.e.,
A= =exp(2mij/(n+1)), j=1lmn,

and setting

vj = (ux —uy)/(2i) = (sin(27kj/(n + 1)) : k = Lin),
we obtain

AUj = K;v;

with .

wi = aog+a1(Aj + A;) = ao + 2a; cos(2mj/(n + 1)).
Since we assumed that a; # 0, these n numbers p; are pairwise distinct, hence V' =: [vy,...,v,] is 1-1 by

(10.8)Lemma, hence a basis for C™. In fact, since V' maps IR" to IR", V is a basis for IR"™. Hence if both ag
and a; are real, then also each p; is real and then, A is diagonable even over IF = IR.

19aug02 (©2002 Carl de Boor

Linear Programming 143

Linear Programming

In Linear Programming, one seeks a minimizer for a linear cost function
x '
on the set
F:={zeR": Ax <b}
of all n-vectors = that satisfy the m linear constraints
A,) 'e <b;, 0= 1m,
with c € R", A € F™*", b € IR"™ given. Here and below, for y, z € IR™,
y<z:=z—yecRI:={uecR":0<u;,j=1Lm}
The set F', also called the feasible set, is the intersection of m halfspaces, i.e., sets of the form
H(a,b) :={x € R" : a'z < b}.
Such a halfspace consists of all the points that lie on that side of the corresponding hyperplane
h(a,b) :== {z € R" : o'z = b}
that the normal a of the hyperplane points away from; see (2.4)Figure, or (14.4)Figure.

Here is a simple example: Minimize
2z + 22

over all z € IR? for which
29> =2, 3x1—22<5, x1+22<3

T —To > —3, 3xr1+x2 > —5.

In matrix notation, and more uniformly written, this is the set of all z € IR? for which Az < b with

0o -1 2
3 -1)
A=1]1 11, b:=13
-1 1 3
-3 -1 5

In this simple setting, you can visualize the set F' by drawing each of the hyperplanes h(A;.,b;) along with
a vector pointing in the same direction as its normal vector, A;.; the set F' lies on the side that the normal
vector points away from; see (14.4)Figure.

Ag [REES

AS:H ||A2:

\ 1/

[As.

19aug02 (©2002 Carl de Boor

144 14. Some applications

(14.4) Figure. The feasible set for five linear constraints in the plane, as
filled out by some level lines of the cost function. Since the gradient of the
cost function is shown as well, the location of the minimizer is clear.

In order to provide a handier description for F', one introduces the so-called slack variables
y:=0b— Auz;
earlier, we called this the residual. With their aid, we can describe F' as
F={zeR":3yecRst (z,y,—1) € null[4, id,,, b]},

and use elimination to obtain a concise description of null[4, id,,, b].

For this, assume that A is 1-1. Then, each column of A is bound, hence is also bound in [A, id,b].
Therefore, after n steps of the (3.2)Elimination Algorithm applied to [A4, id, b], we will arrive at a matrix B,
with the same nullspace as [A, id, b], and an n-vector nbs (with nbs(k) the row used as pivot row for the
kth unknown or column, all k), for which

B(nbs, 1:n)

is upper triangular with nonzero diagonals while, with bs the rows not yet used as pivot rows,
B(bs,1:n) =0.

Further, since the next m columns of [A4, id,,, b] have nonzero entries in these pivot rows nbs only in columns
n + nbs, the other columns, i.e., columns n + bs, will remain entirely unchanged. It follows that

B(bs,n +bs) = id

m—n’
Therefore, after dividing each of the n pivot rows by their pivot element and then using each pivot row to

eliminate its unknown also from all other pivot rows, we will arrive at a matrix, still called B, for which now

B([nbs, bs], bound) = id

m

with
bound := [1l:n,n + bs]

the bound columns of [A, id, b].

For our particular example, the matrix B will be reached after just two steps:

0 -1 100 0 0 2 0 -1 1.0 0 0 0 2
3 -10100 05 0 -4 01 =3 00 —4
[A,idb)=|1 1 00100 3[—|1 1 00 1 00 3
-1 1 00010 3 0 2 00 1 10 6
-3 -1.0 000 15 L0 2 00 3 0 1 14
00 1 0 1/2 1/2 0 5
0001 -1 2 0 8
— |1 000 1/2 -1/2 0 0| = B,
0100 1/2 1/2 0 3
o000 2 -1 1 8

with nbs = [3,4], and bs = [1, 2, 5].
It follows that
free := [n+nbs,n+m + 1]

19aug02 (©2002 Carl de Boor

Linear Programming 145

gives the free columns of [A, id, b]. In particular, we can freely choose ynps, i.e., the slack variables associated
with the n pivot rows, and, once they are chosen, then x as well as the bound slack variables, yps, are uniquely
determined by the requirement that (x,y, —1) € null B.

This suggests eliminating x altogether, i.e., using the pivot rows B(nbs,:) to give
x = B(nbs, end) — B(nbs, n + nbs)ynbs,

(with end being MATLAB’s convenient notation for the final row or column index) and, with that, rewrite the
cost function in terms of ypps:

Ynbs — c'B(nbs, end) — c'B(nbs, n + nbs)ynps-

Correspondingly, we simplify the working array B in the following two ways:
(i) We append the row B(m + 1,:) := ¢ B(nbs, :).
(ii) Then, we drop entirely the n rows nbs (storing those rows perhaps in some other place against the
possibility that we need to compute x from ynps at some later date), and also drop the first n columns.

In our example, this leaves us with the following, smaller, array B:

10 1/2 1/2 0 5
01 -1 2 0 8

B=1lg 0 2 -1 1 sl bs =[1,2,5], nbs = [3,4].
0 0 3/2 —-1/2 0 3

This change of independent variables, from x to ynps, turns the n hyperplanes h(Ag.,b(k)), k € nbs,
into coordinate planes; see (14.5)Figure. In particular, the choice ynps = 0 places us at the (unique) point of
intersection of these n hyperplanes. In our example, that point is = (0, 3), and it is marked in (14.4)Figure,
and functions as the origin in (14.5)Figure(a).

y2 =0
ys =0
~ y1:0
y3 =10
y1=0
- y2 =10
ya=0
ya =0 ys =0

Il
o

Y3
(a) (b)
(14.5) Figure. The feasible set for five linear constraints in the plane, as
filled out by some level lines of the cost function, viewed in terms of the
(nonbasic) variables (a) ys,v4; (b) ys5,y4. From the latter, the minimizing
vertex will be reached in one step of the Simplex Method.

In terms of this B as just constructed, and with
m' :=m —n = #bs,

19aug02 (©2002 Carl de Boor

146 14. Some applications

our minimization problem now reads: Minimize the cost function
(14.6) Ynbs — B(end, end) — B(end, nbs) ynbs

over all ynps € IR} for which
B(bs,nbs) ynbs < B(bs, end),

i.e., for which
Ybs := B(bs,end) — B(bs,nbs)ynps € IR’ .

This is the form in which linear programming problems are usually stated, and from which most textbooks
start their discussion of such problems.

Note how easily accessible various relevant information now is.
(i) B(end,end) tells us the value of the cost function at the current point, ynps = 0.

(ii) For any k € nbs, the entry B(end, k) tells us how the cost function would change if we were to change
the value of the nonbasic variable y; in the only way permitted, i.e., from 0 to something positive. Such
a move would lower the cost function if and only if B(end, k) > 0.

(iii) Our current point, ynps = 0, is feasible if and only if B(1:m’, end) > 0.

(iv) If we were to change the nonbasic variable y from zero to something positive, then the basic variable
Yos(iy would change, from B(i,end) to B(i,end) — B(i, k)yr. Hence, assuming B(i,end) > 0 and
B(i, k) > 0, we could change y;, only to B(i, end)/B(i, k) before the bs(i)th constraint would be violated.
In our example (have a look at (14.5)Figure(a)), we already observed that our current point, ynps = 0,

is, indeed, feasible. But we notice that, while B(end,4) < 0, hence any feasible change of y, would only

increase the cost function (14.6), B(end,3) is positive, hence know that we can further decrease the cost
function (14.6) by increasing y3. Such a change is limited by concerns for the positivity of y; and ys. As for

y1, we would reach y; = 0 when y3 = 5/(1/2) = 10, while, for y5, we would reach y5 = 0 when y3 = 8/2 = 4.

We take the smaller change and thereby end up at a new vector y, with y4 = 0 = ys, i.e., are now at the

intersection of the constraints 4 and 5, with the cost further reduced by (3/2)4 = 6, to —3.

In other words, after this change, y4 and y5 are now the nonbasic variables. In order to have our B tell
us about this new situation, and since 5 = bs(3), we merely divide its 3rd row by B(3,3), then use the row
to eliminate y3 from all other rows of B. This leads to

0 3/4 -1/4 3
3/2 1/2 12
—-1/2 1/2 4 |’
1/2 -3/4 -3

bs =[1,2,3], nbs = [5,4].

o O O
[=)
o = O

In particular, we readily see that the cost at y4 = 0 = y5 is, indeed, —3. We also see (see also (14.5)Figure(b))
that it is possible to reduce the cost further by changing y4, from 0 to something positive. Such a change
would reduce y; = 3 by (3/4)ys and would reduce y = 12 by (3/2)ys. Hence, this change is limited to the
smaller of 3/(3/4) = 4 and 12/(3/2) = 8, i.e., to the change y4 = 4 that makes y; = 0.

We carry out this exchange, of y4 into bs and y; into nbs, by dividing B(1,:) by B(1,4) and then using
that row to eliminate y4 from all other rows, to get the following B:

4/3 0 0 1 -1/3 4
-2 1 00 1 6

b= 2/3 01 0 1/3 6|’ bs = [4,2,3], mnbs=[51].
-1/3 0 0 0 -2/3 —4

In particular, now B(end,nbs) < 0, showing that no further improvement is possible, hence —4 is the
minimum of the cost function on the feasible set. At this point, ys.4 = (6,4), hence, from the rows used as

pivot rows to eliminate x, we find that, in terms of x, our optimal point is x = (0, 3)—(1/2) E _11] (6,4) =

—(1,2), and, indeed, c'z = (2,1)%(-1,-2) = —4.

19aug02 (©2002 Carl de Boor

Flats: points, vectors, barycentric coordinates, differentiation 147

The steps just carried out for our example are the standard steps of the Simplex Method. In this
method (as proposed by Dantzig), one examines the value of the cost function only at a vertex, i.e., at
the unique intersection of n of the constraint hyperplanes, i.e., at a point corresponding to ynps = 0 for
some choice of nbs. Assuming that vertex feasible, one checks whether B(end,nbs) < 0. If it is, then one
knows that one is at the minimum. Otherwise, one moves to a neighboring vertex at which the cost is
less by exchanging some y;, for which B(end, k) > 0 with some ypg(;y with i chosen as the minimizer for
B(i,end)/B(i, k) over all ¢ with B(i,k) > 0. This exchange is carried out by just one full elimination step
applied to B, by dividing B(4,:) by B(i, k) and then using this row to eliminate yj, from all other rows, and
then updating the sequences bs and nbs.

This update step is one full elimination step (sometimes called a (Gauss-)Jordan step in order to
distinguish it from the Gauss step, in which the unknown is eliminated only from the rows not yet used as
pivot rows).

Since all the information contained in the columns B(:,bs) is readily derivable from bs and nbs, one
usually doesn’t bother to carry these columns along. This makes the updating of the matrix B(:,nbs) a bit
more mysterious.

Finally, there are the following points to consider:

unbounded feasible set If, for some k € nbs, B(end, k) is the only positive entry in its column, then
increasing y; will strictly decrease the cost and increase all basic variables. Hence, if ynps = 0 is a feasible
point, then we can make the cost function on the feasible set as close to —oo as we wish. In our example, this
would be the case if we dropped constraints 1 and 5. Without these constraints, in our very first Simplex
step, we could have increased ys without bound and so driven the cost to —oo.

finding a feasible point In our example, we were fortunate in that the very first vertex we focused
on was feasible. However, if it is not, then one can use the very Simplex Method to obtain a feasible point,
simply by introducing an additional variable, yo, which is added to each infeasible row, and then using the
Simplex Method to minimize the cost function

Y= Yo-

In this, the variable yq starts off nonbasic, i.e., yo = 0, and, then, as an extraordinary first step, we would
exchange yo for the most negative basic variable, and then proceed until the minimum of this auxiliary
cost function is reached. If it is positive, then we now know that the feasible set is empty. Otherwise,
the minimum is zero (i.e., yp is again a nonbasic variable) and can simply be dropped now since the point
corresponding to the remaining nonbasic variables being zero is feasible.

Note that, in this way, the Simplex Method can be used to solve any finite set of linear inequalities in
the sense of either providing a point satisfying them all or else proving that none exists.

convergence in finitely many steps If we can guarantee that, at each step, we strictly decrease the
cost, then we must reach the vertex with minimal cost in finitely many steps since, after all, there are only
finitely many vertices. A complete argument has to deal with the fact that the cost may not always strictly
decrease because the current point may lie on more than just n of the constraint hyperplanes.

Approximation by broken lines

the

Flats: points, vectors, barycentric coordinates, differentiation

In CAGD and Computer Graphics, Linear Algebra is mainly used to change one’s point of view, that
is, to change coordinate systems. In this, even the familiar 3-space, IR?, is often treated as an ‘affine space’
or ‘flat’ rather than a vector space, in order to deal simply with useful maps other than linear maps, namely
the affine maps.

For example, the translation
R}—R*:p—p+uv

19aug02 (©2002 Carl de Boor

148 14. Some applications

of IR? by the vector v is not a linear map. Nevertheless, it can be represented by a matrix, using the following
trick. Embed IR® into IR* by the 1-1 map

R?> - R*: z+— (z,1).
The image of IR? under this map is the ‘flat’
F:=TR*x1={(z,1): 2 € R%}.

Consider the linear map on IR* given by

Then, for any z € IR,
Ty(z,1) = (idgz +v,0'z +1) = (z + v, 1).

In other words, the linear map T, carries F' into itself in such a way that the point p = (x,1) is carried to
its ‘translate’ (p 4+ v,1) = p+ (v,0).

Let, now, Ae IPA{4X4 be an arbitrary linear map on IR* subject only to the condition that it map F into
itself. Breaking up A in the same way as we did Ty, i.e.,

a= [1]

we get

fT(m, 1) = (Apx +v,u'z +1),

hence want uz + ¢ = 1 for all € IR, and this holds if and only if u =0 and ¢t = 1, i.e.,

T Ao v
A[O 1}

is the most general such map.

Look at its action as concerns the general point p = (z,1) in F: After subtracting po := (0,1) from p,
we obtain a vector in the linear subspace

F—-F={p—q:p,q€ F} =ranlep,es,e3].

Since A maps I into itself, it also maps this subspace into itself, hence /T(p —po) = (AoTp—p,,0) is again in
this subspace and, after adding to it the element Xpo = (v,1) € F, we finally obtain A\p as A\(p —po)+ A\po.
Three-dimensional plots in MATLAB show, in fact, the orthogonal projection onto the (x,y)-plane
after an affine transformation of IR® that makes the center of the plotting volume the origin and
a rotation that moves a line, specified by azimuth and elevation, to the z-axis. This affine map is
recorded in a matrix of order 4, obtainable by the command view, and also changeable by that
command, but, fortunately, in down-to-earth terms like azimuth and elevation, or viewing angle.

19aug02 (©2002 Carl de Boor

Flats: points, vectors, barycentric coordinates, differentiation 149

Consider now the question which weighted sums

T
E :pjaj
J=0

of p; € F are again in F. Apparently, all that is required is that

zr:()éj =1.
j=0

Such a weighted sum is called an affine combination. Thus, as far as the set F' is concerned, these
are the only linear combinations allowed. Note that such an affine sum can always be rewritten as

T
po+ Y _(p; = po)ay,
j=1

where now the weights «;, j = 1:r, are arbitrary. In other words, an affine sum on F' is obtained
by adding to some point in F' an arbitrary weighted sum of elements in the vector space F—F.

An affine map on F' is any map from F' to F' that preserves affine combinations, i.e., for which

A(po + Z(pj — po)a;) = Apo + Z(Apj — Apo)ay;

J

for all p; € F, a; € R. It follows that the map on F'—F defined by
Ag: F—F - F—F :p—q— Ap — Aq

must be well-defined and linear, hence A is necessarily the restriction to F' of some linear map A
on IR* that carries F' into itself and therefore also carries the linear subspace F—F into itself.

The main pay-off, in CAGD and in Computer Graphics, of these considerations is the fact that
one can represent the composition of affine maps by the product of the corresponding matrices.
This concrete example has led to the following abstract definition of a flat, whose notational

conventions strongly reflect the concrete example. It should be easy for you to verify that the
standard example is, indeed, a flat in the sense of this abstract definition.

(14.7) Definition: A flat or affine space or linear manifold is a nonempty set F of
points, a vector space T of translations, and a map

(14.8) 0 FxT—F:(pr)—7{p)=p+T

satisfying the following:

(a) {(p,7) e FxT} p+7=p <= 7=0.
(b) {r,o €T} (+7)+0=-+(7+0).

(¢) Hpo € F} ¢(po,-) is onto.

Translations are also called vectors since (like ‘vehicles’ or ‘conveyors’, words that have the
same Latin root as ‘vector’) they carry points to points.

Condition (a) ensures the uniqueness of the solution of the equation p+7 = ¢ whose existence
(see the proof of (3) below) is guaranteed by (c).

19aug02 (©2002 Carl de Boor

150 14. Some applications

Condition (b) by itself is already satisfied, for arbitrary F' and T, by, e.g., ¢ : (p,7) — p.

Condition (c) is needed to be certain that T is rich enough. (a) + (b) is already satisfied, e.g.,
by T = {0}, ¢(-,0) = id. As we will see in a moment, (a)+(b)+(c) together imply that ¢(p,-) is
onto for every p € F. In other words, there is nothing special about the py that appears in (c). In
fact, the notion of a flat was developed explicitly as a set that, in contrast to a vector space which
has an origin, does not have a distinguished point.

Consequences
(1) ¢(-,0) = id (by (a)).
(2) Forany 7 € T, o(-, 7) is invertible; its inverse is (-, —7) (by (1) and (b)). The corresponding
abbreviation
p—Ti=p+(-T)
is helpful and standard.
(3) Y{p,q € F} {7 € T} p+ 7 = q. This unique 7 is usually denoted

q—D

for obvious reasons.

Proof: If p+7 = ¢ = p+o, then, by (2) and (b), p = ¢+ (—0) = (p+7)+(—0) = p+(7—0),
therefore, by (1), 7 — o0 = 0, showing the uniqueness of the solution to p+? = ¢, regardless of p and
g. The existence of a solution is, offthand, only guaranteed, by (c), for p = py. However, with the
invertibility of ¢(po,-) : T — F thus established, hence with p — pg and g — py well-defined, we have

q=po+ (g —po) and p = po + (p — po), hence py = p — (p — po), therefore
q=p—(p—po) + (g —po),
showing that the equation p+7 = ¢ has a solution (namely the vector (¢ — po) — (p — po))- O

(4) Note that (3) provides a 1-1 correspondence (in many different ways) between F' and T.
Specifically, for any particular o € F,

F—-T:p—p—o
is an invertible map, as is its inverse,
T—F:17—o0+T.

However, the wish to avoid such an arbitrary choice of an ‘origin’ o in F' provided the impetus
to define the concept of flat in the first place. The dimension of a flat is, by definition, the
dimension of the associated vector space of translations. Also, since the primary focus is usually
the flat, F', it is very convenient to write its vector space of translations as

F-F.

(5) The discussion so far has only made use of the additive structure of T. Multiplication
by scalars provides additional structure. Thus, for arbitrary @ C F, the affine hull of @ is, by
definition,

»(Q) := q + span(Q — q),

with the right side certainly independent of the choice of ¢ € @, by (4). The affine hull of @ is,
itself, a flat, with span(Q — ¢) the vector space of its translations.

(6) In particular, the affine hull of a finite subset @ of F is
b(Q) =qo +ranfg —qo: ¢ € Q\qo], @ € Q.

19aug02 (©2002 Carl de Boor

Flats: points, vectors, barycentric coordinates, differentiation 151

Let
g+ Y (a—q)ag

q7#qo0

be one of its elements. In order to avoid singling out g9 € @, it is customary to write instead

anq, with g, =1— Z 0y.
q

q#qo0

This makes b(Q) the set of all affine combinations

anqv Zaq =1,

qeQ q

of the elements of). The affine hull b(qo, .. ., ¢,-) of a sequence qo, . . ., ¢, in F' is defined analogously.
But I prefer to work here with the set) in order to stress the point of view that, in a flat, all points
are of equal importance.

A special case is the straight line through p # ¢, i.e.,
b(p,q) =p+R(g—p)=q¢+R(p-—q)={(1-a)p+ag:aeR}.

(7) The finite set Q C F is called affinely independent in case, for some (hence for every)
0€Q,[g—o0:q€Q\o]is 1-1. In that case, each p € b(Q) can be written in exactly one way as an

affine combination
p=:> aly(p), Y ly(p) =1,
q q

of the ¢ € Q. Indeed, in that case, for any particular o € Q, V,, :=[¢ — 0 : ¢ € Q\0] is a basis for
the vector space of translations on b(Q), hence, for all p € b(Q),

p=o+(p—0)=0+V,V, (p—0) = Z qlq(p),
q€Q

with
(Ly(p): g € Q\0) =V, (p—0), Lo(p):=1=) Ly(p).
g#o

The ‘affine’ vector ¢(p) = (44(p) : ¢ € Q) € IRY constitutes the barycentric coordinates of p
with respect to Q.

It follows that, for arbitrary p; € b(Q) and arbitrary a; € IR with >, a; = 1, we have
D= iy Apa=Y O airg(pi)g,
i i q q i

with
ZO@(Z)\q(pz)) = Zai =1.

Hence, by the uniqueness of the barycentric coordinates, the map
Ab(Q) =R :p— (\(p): g €Q)

is affine, meaning that

A(Z ap;) = Z i \(pi)-

19aug02 (©2002 Carl de Boor

152 14. Some applications

It is also 1-1, of course, and so is, for our flat b(Q), what a coordinate map is for a vector space,
namely a convenient structure-preserving numerical representation of the flat.

It follows that, with fy : @ — G an arbitrary map on @ into some flat GG, the map

Fib(@Q) =Gy AP)a— Y Ag(p)fola)

qeQ q€eQ

is affine. Hence, if A: f — G is an affine map that agrees with fy on @, then it must equal f.

(8) Let the r + 1-subset @ of the r-dimensional flat F' be affinely independent. Then, for any
0€Q,[g—o0:q€ Q\o]is a basis for F—F, and the scalar-valued map

ly: F - TR :p—L,(p)

is a linear polynomial on F. Some people prefer to call it an affine polynomial since, after all,
it is not a linear map. However, the adjective ‘linear’ is used here in the sense of ‘degree < 1’; in
distinction to quadratic, cubic, and higher-degree polynomials. A description for the latter can be
obtained directly from the ¢,, ¢ € Q, as follows. The column map

o =[] €)@ : 0 € Z% |0 = K]
q€Q

into IR” is a basis for the (scalar-valued) polynomials of degree < k on F.

(9) An affine combination with nonnegative weights is called a convex combination. The
weights being affine, hence summing to 1, they must also be no bigger than 1. The set

[g..q={Q1—a)p+ag:ac[0..1]}

of all convex combinations of the two points p, ¢ is called the interval with endpoints p, q. The

set
0g = {anq:ae [O..l]Q,Zaqzl}
q

q€Q

of all convex combinations of points in the finite set @ is called the simplex with vertex set @
in case @ is affinely independent.

(10) Flats are the proper setting for differentiation. Assume that the flat F is finite-dimensional.
Then there are many ways to introduce a vector norm on the corresponding vector space F—F of
translations, hence a notion of convergence, but which vector sequences converge and which don’t
is independent of the choice of that norm. This leads in a natural way to convergence on F': The
point sequence (py, : n € IN) in F converges to p € F exactly when lim,_ ||p, — p|| = 0. Again,
this characterization of convergence does not depend on the particular vector norm on F'—F chosen.

With this, the function f : FF — G, on the finite-dimensional flat F' to the finite-dimensional
flat G, is differentiable at p € F in case the limit

D-f(p) :== }Ligg(f(p +h1) — f(p))/h

exists for every 7 € F—F. In that case, D, f(p) is called the derivative of f at p in the direction
T

Notice that D, f(p) is a vector, in G—G. Tt tells us the direction into which f(p) gets translated
as we translate p to p + 7. Further, its magnitude gives an indication of the size of the change as a
function of the size of the change in p. Exactly,

f(p+ h7) = f(p) + hD- f(p) + o(||T|h), h>0.

19aug02 (©2002 Carl de Boor

grad, div, and curl 153

In particular, if f is differentiable at p, then
Df(p): F-F - G—G : 17— D.f(p)
is a well-defined map, from F—F to G—G. This map is obviously positively homogeneous, i.e.,
Di-f(p) = hD-f(p), h=0.
If this map D f(p) is linear, it is called the derivative of f at p. Note that then
flp+7)=fp)+Df(p)r +olrl), TeF-F.

If V is any particular basis for FF—F and W is any particular basis for G—G, then the matrix

Jf(p) == W' Df(p)V

is the Jacobian of f at p. Its (i,5) entry tells us how much f(p + 7) moves in the direction
of w; because of a unit change in 7 in the direction of v;. More precisely, if 7 = Ve, then

Df(p)r =W Jf(p)a.
A practical high-point of these considerations is the chain rule, i.e., the observation that if
g : G — H is a ‘uniformly’ differentiable map, then their composition ¢ f, is differentiable, and

D(gf)(p) = Dg(f(p))Df(p).

grad, div, and curl

19aug02 (©2002 Carl de Boor

154 15. Optimization and quadratic forms

15. Optimization and quadratic forms

Minimization
We are interested in minimizing a given function
f:dom f CcR" — IR,
i.e., we are looking for & € dom f so that

Vy edom f f(z) < f(y).
Any such z is called a minimizer for f; in symbols:

x € argmin f.

The discussion applies, of course, also to finding some = € argmax f, i.e., finding a maximizer
for f, since x € argmax f iff € argmin(—f).

Finding minimizers is, in general, an impossible problem since one cannot tell whether or not
x € argmin f except by checking every y € dom f to make certain that, indeed, f(z) < f(y).
However, if f is a ‘smooth’ function, then one can in principle check whether, at least, x is a local
minimizer, i.e., whether f(z) < f(y) for all ‘nearby’ y, by checking whether the gradient

Df(z) = (Dif(z):i=1mn)

of f at x is zero. Here, D;f = 0f /Ox; is the derivative of f with respect to its ith argument.

To be sure, the vanishing of the gradient of f at x is only a necessary condition for = to be a
minimizer for f, since the gradient of a (smooth) function must also vanish at any local mazimum,
and may vanish at points that are neither local minima nor local maxima but are, perhaps, only
saddle points. By definition, any point « for which Df(z) = 0 is a critical point for f.

At a critical point, f is locally flat. This means that, in the Taylor expansion
f(x+h) = f(x)+ (Df(x)) h+h"(D?f(z)/2)h + h.o.t.(h)
for f at x, the linear term, (D f(z))'h, is zero. Thus, if the matrix
H :=D?*f(z) = (D;D;f(z) :i,j = Lin)

of second derivatives of f is 1-1, then x is a local minimizer (maximizer) for f if and only if 0 is a
minimizer (maximizer) for the quadratic form

R" - R:h— h'Hh
associated with the Hessian H = D?f(x) for f at x.

If all second derivatives of f are continuous, then also D;D;f = D;D; f, hence the Hessian is
real symmetric, therefore
H'=H.

However, in the contrary case, one simply defines H to be

H = (D*f(z) + (D*f(x))")/2,
thus making it real symmetric while, still,

R'Hh = h'D?f(z)h, Vhe€ R

In any case, it follows that quadratic forms model the behavior of a smooth function ‘near’ a critical
point. The importance of minimization of real-valued functions is the prime motivation for the
study of quadratic forms, to which we now turn.

19aug02 (©2002 Carl de Boor

