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Quadratic forms

Each A ∈ IRn×n gives rise to a quadratic form, via

qA : IRn → IR : x 7→ xtAx.

However, as we already observed, the quadratic form ‘sees’ only the symmetric part

(A + At)/2

of A, i.e.,
∀x ∈ IRn xtAx = xt(A + At)/2 x.

For this reason, in discussions of the quadratic form qA, we will always assume that A is real
symmetric.

The Taylor expansion for qA is very simple. One computes

qA(x + h) = (x + h)tA(x + h) = xtAx + xtAh + htAx + htAh = qA(x) + 2(Ax)th + htAh,

using the fact that At = A, thus htAx = xtAh = (Ax)th, hence

DqA(x) = 2Ax, D2qA(x) = 2A.

It follows that, for any 1-1 A, 0 is the only critical point of qA. The sought-for classification of
critical points of smooth functions has led to the following classification of quadratic forms:

positive ∀x 6= 0 xtAx > 0 the unique minimizer
positive semi- ∀x xtAx ≥ 0 a minimizer

A is definite := ⇐⇒ 0 is for qA.
negative semi- ∀x xtAx ≤ 0 a maximizer

negative ∀x 6= 0 xtAx < 0 the unique maximizer

If none of these conditions obtains, i.e., if there exist x and y so that xtAx < 0 < ytAy, then qA is
called indefinite and, in this case, 0 is a saddle point for qA.

(15.1) Figure. Local behavior near a critical point.
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156 15. Optimization and quadratic forms

(15.1)Figure shows three quadratic forms near their unique critical point. One is a minimizer,
another is a saddle point, and the last one is a maximizer. Also shown is a quadratic form with a
whole straight line of critical points. The figure (generated by the MATLAB command meshc) also
shows some contour lines or level lines, i.e., lines in the domain IR2 along which the function
is constant. The contour plots are characteristic: Near an extreme point, be it a maximum or a
minimum, the level lines are ellipses, with the extreme point their center, while near a saddle point,
the level lines are hyperbolas, with the extreme point their center and with two level lines actually
crossing at the saddle point.

There is an intermediate case between these two, also shown in (15.1)Figure, in which the
level lines are parabolas and, correspondingly, there is a whole line of critical points. In this case,
the quadratic form is semidefinite. Note, however, that the definition of semidefiniteness does not
exclude the possibility that the quadratic form is actually definite.

Since, near any critical point x, a smooth f behaves like its quadratic term h 7→ ht(D2f(x)/2)h,
we can be sure that a contour plot for f near an extremum would approximately look like concentric
ellipses while, near a saddle point, it would look approximately like concentric hyperbolas.

These two patterns turn out to be the only two possible ones for definite quadratic forms on
IR2. On IRn, there are only d(n + 1)/2e possible distinct patterns, as follows from the fact that, for
every quadratic form qA, there are o.n. coordinate systems U for which

qA(x) =
n∑

i=1

di (U cx)2i .

15.1 For each of the following three functions on IR2, compute the Hessian D2f(0) at 0 and use it to determine
whether 0 is a (local) maximum, minimum, or neither. (In an effort to make the derivation of the Hessians simple,
I have made the problems so simple that you could tell by inspection what kind of critical point 0 = (0, 0) ∈ IR2 is;
nevertheless, give your answer based on the spectrum of the Hessian.)

(a) f(x, y) = (x − y) sin(x + y)

(b) f(x, y) = (x + y) sin(x + y)

(b) f(x, y) = (x + y) cos(x + y).

Reduction of a quadratic form to a sum of squares

Consider the effects of a change of basis. Let V ∈ IRn be a basis for IRn and consider the map

f := qA ◦ V.

We have f(x) = (V x)tAV x = xt(V tAV )x, hence

qA ◦ V = qV tAV .

This makes it interesting to look for bases V for which V tAV is as simple as possible. Matrices
A and B for which B = V tAV are said to be congruent to each other. Note that congruent
matrices are not necessarily similar; in particular, their spectra can be different. However, by
Sylvester’s Law of Inertia (see (15.9) below), congruent hermitian matrices have the same number
of positive, of zero, and of negative, eigenvalues. This is not too surprising in view of the following
reduction to a sum of squares which is possible for any quadratic form.

(15.2) Proposition: Every quadratic form qA on IRn can be written in the form

qA(x) =
n∑

j=1

dj(uj
tx)2,

for some suitable o.n. basis U = [u1, u2, . . . , un] for which U tAU = diag(d1, . . . , dn) ∈ IRn.
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Proof: Since A is hermitian, there exists, by (12.2)Corollary, some o.n. basis U = [u1, u2, . . . , un]
for IFn for which U tAU = diag(d1, d2, . . . , dn) ∈ IRn×n. Now use the facts that U tU = idn and
therefore qA(x) = qUtAU (U tx) to obtain for qA(x) the displayed expression.

What about the classification introduced earlier, into positive or negative (semidefinite)?
The proposition permits us to visualize qA(x) as a weighted sum of squares (with real weights
d1, d2, . . . , dn) and U tx an arbitrary n-vector (since U is a basis), hence permits us to conclude that
qA is definite if and only if all the dj are strictly of one sign, semidefinite if and only if all the dj are
of one sign (with zero possible), and indefinite if and only if there are both positive and negative
dj .

MATLAB readily provides these numbers dj by the command eig(A).
Consider specifically the case n = 2 for which we earlier provided some pictures. Assume

without loss that d1 ≤ d2. If 0 < d1, then A is positive definite and, correspondingly, the contour
line

cr := {x ∈ IR2 : qA(x) = r} = {x ∈ IR2 : d1(u1
tx)2 + d2(u2

tx)2 = r}
for r > 0 is an ellipse, with axes parallel to u1 and u2. If 0 = d1 < d2, then these ellipses turn into
straight lines. Similarly, if d2 < 0, then the contour line

cr := {x ∈ IR2 : qA(x) = r} = {x ∈ IR2 : d1(u1
tx)2 + d2(u2

tx)2 = r}
for r < 0 is an ellipse, with axes parallel to u1 and u2. Finally, if d1 < 0 < d2, then, for any r, the
contour line

cr := {x ∈ IR2 : qA(x) = r} = {x ∈ IR2 : d1(u1
tx)2 + d2(u2

tx)2 = r}
is a hyperbola, with axes parallel to u1 and u2.

Note that such an o.n. basis U is Cartesian, i.e., its columns are orthogonal to each other (and
are normalized). This means that we can visualize the change of basis, from the natural basis to
the o.n. basis U , as a rigid motion, involving nothing more than rotations and reflections.

Rayleigh quotient

This section is devoted to the proof and exploitation of the following remarkable

Fact: The eigenvectors of a hermitian matrix A are the critical points of the corresponding
Rayleigh quotient

RA(x) := 〈Ax, x〉/〈x, x〉,
and RA(x) = µ in case Ax = µx.

This fact has many important consequences concerning how the eigenvalues of a hermitian
matrix depend on that matrix, i.e., how the eigenvalues change when the entries of the matrix are
changed, by round-off or for other reasons.

This perhaps surprising connection has the following intuitive explanation: Suppose that Ax 6∈
ran[x]. Then the error h := Ax − RA(x)x in the least-squares approximation to Ax from ran[x]
is not zero, and is perpendicular to ran[x]. Consequently, 〈Ax, h〉 = 〈h, h〉 > 0, and therefore the
value

〈A(x + th), x + th〉 = 〈Ax, x〉 + 2t〈Ax, h〉+ t2〈Ah, h〉
of the numerator of RA(x + th) grows linearly for positive t, while its denominator

〈x + th, x + th〉 = 〈x, x〉 + t2〈h, h〉
grows only quadratically, i.e., much less fast for t near zero. It follows that, in this situation,
RA(x+ th) > RA(x) for all ‘small’ positive t, hence x cannot be a critical point for RA. – To put it
differently, for any critical point x for RA, we necessarily have Ax ∈ ran[x], therefore Ax = RA(x)x.
Of course, that makes any such x an eigenvector with corresponding eigenvalue RA(x).

19aug02 c©2002 Carl de Boor



158 15. Optimization and quadratic forms

Next, recall from (12.2) that a hermitian matrix is unitarily similar to a real diagonal matrix.
This means that we may assume, after some reordering if necessary, that

A = UDU c

with U unitary and with M = diag(µ1, . . . , µn) where
µ1 ≤ µ2 ≤ · · · ≤ µn.

At times, we will write, more explicitly,
µj(A)

to denote the jth eigenvalue of the hermitian matrix A in this ordering. Note that there may be
coincidences here, i.e., µj(A) is the jth smallest eigenvalue of A counting multiplicities. Note also
that, in contrast to the singular values (and in contrast to most books), we have put here the
eigenvalues in increasing order.

Now recall that a unitary basis has the advantage that it preserves angles and lengths since
〈Ux, Uy〉 = 〈x, y〉 for any orthonormal U . Thus

〈Ax, x〉 = 〈UMU cx, x〉 = 〈M(U cx), U cx〉,
and 〈x, x〉 = 〈U cx, U cx〉. Therefore

RA(x) = 〈Ax, x〉/〈x, x〉 = 〈M(U cx), U cx〉/〈U cx, U cx〉 = RM(U cx).
This implies that

maxx

minx
RA(x) = maxy

miny
RM(y).

On the other hand, since M is diagonal, 〈My, y〉 = ∑
j µj |yj |2, therefore

RM(y) =
∑

j

µj |yj |2/
∑

j

|yj |2,

and this shows that
min

x
RA(x) = min

y
RM(y) = µ1, max

x
RA(x) = max

y
RM(y) = µn.

This is Rayleigh’s Principle. It characterizes the extreme eigenvalues of a hermitian matrix. The
intermediate eigenvalues are the solution of more subtle extremum problems. This is the content
of the Courant-Fischer minimax Theorem and the ?.?. maximin Theorem. It seems most
efficient to combine both in the following

(15.3) MMM (or, maximinimaxi) Theorem: Let A be a hermitian matrix of order n,
hence A = UMU c for some unitary U and some real diagonal matrix M = diag(· · · , µj, . . .)
with µ1 ≤ · · · ≤ µn. Then, for j = 1:n,

max
dim G<j

min
x⊥G

RA(x) = µj = min
j≤dim H

max
x∈H

RA(x),

with G and H otherwise arbitrary linear subspaces.

Proof: If dim G < j ≤ dimH , then one can find y ∈ H\0 with y ⊥ G (since, with V
a basis for G and W a basis for H , this amounts to finding a nontrivial solution to the equation
V cW? = 0, and this system is homogeneous with more unknowns than equations). Therefore

min
x⊥G

RA(x) ≤ RA(y) ≤ max
x∈H

RA(x).

Hence,
max

dim G<j
min
x⊥G

RA(x) ≤ min
j≤dim H

max
x∈H

RA(x).

On the other hand, for G = ran[u1, . . . , uj−1] and H = ran[u1, . . . , uj ],
min
x⊥G

RA(x) = µj(A) = max
x∈H

RA(x).
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The MMM theorem has various useful (and immediate) corollaries.

(15.4) Interlacing Theorem: If the matrix B is obtained from the hermitian matrix A by
crossing out the kth row and column (i.e., B = A(I, I) with I := (1:k − 1, k + 1:n)), then

µj(A) ≤ µj(B) ≤ µj+1(A), j < n.

Proof: It is sufficient to consider the case k = n, since we can always achieve this situation
by interchanging rows k and n, and columns k and n, of A, and this will not change spec(A).
Let J : IFn−1 → IFn : x 7→ (x, 0). Then RB(x) = RA(Jx) and ranJ = ran[en]⊥, therefore also
J(G⊥) = (JG + ran[en])⊥ and {JG + ran[en] : dimG < j, G ⊂ IFn−1} ⊂ {G̃ : dim G̃ < j + 1, G̃ ⊂
IFn}. Hence

µj(B) = max
dim G<j

min
x⊥G

RA(Jx) = max
dim G<j

min
y⊥JG+ran[en]

RA(y) ≤ max
dim G̃<j+1

min
y⊥G̃

RA(y) = µj+1(A).

Also, since {JH : j ≤ dimH, H ⊂ IFn−1} ⊂ {H̃ : j ≤ dim H̃, H̃ ⊂ IFn},

µj(B) = min
j≤dim H

max
x∈H

RA(Jx) = min
j≤dim H

max
y∈JH

RA(y) ≥ min
j≤dim H̃

max
y∈H̃

RA(y) = µj(A).

(15.5) Corollary: If A =
[

B C
D E

]
∈ IFn×n is hermitian, and B ∈ IFr×r, then at least

r eigenvalues of A must be ≤ max spec(B) and at least r eigenvalues of A must be ≥
min spec(B).

In particular, if the spectrum of B is negative and the spectrum of E is positive, then A
has exactly r negative, and n− r positive, eigenvalues.

A different, simpler, application of the MMM theorem is based on the following observation:
If

f(t) ≤ g(t) ∀t,
then this inequality persists if we take on both sides the maximum or minimum over the same set
T , i.e., then

max
t∈T

f(t) ≤ max
t∈T

g(t), min
t∈T

f(t) ≤ min
t∈T

g(t).

It even persists if we further take the minimum or maximum over the same family T of subsets T ,
e.g., then also

max
T∈T

min
t∈T

f(t) ≤ max
T∈T

min
t∈T

g(t).

Consequently,

(15.6) Corollary: If A, B are hermitian, and RA(x) ≤ RB(x) + c for some constant c and
all x, then

µj(A) ≤ µj(B) + c, ∀j.
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160 15. Optimization and quadratic forms

This gives

(15.7) Weyl’s inequalities: If A = B + C, with A, B, C hermitian, then

µj(B) + µ1(C) ≤ µj(A) ≤ µj(B) + µn(C), ∀j.

Proof: Since µ1(C) ≤ RC(x) ≤ µn(C) (by Rayleigh’s principle), while RB(x) + RC(x) =
RA(x), the preceding corollary provides the proof.

A typical application of Weyl’s Inequalities is the observation that, for A = BBc + C ∈ IFn×n

with B ∈ IFn×k and A hermitian (hence also C hermitian), µ1(C) ≤ µj(A) ≤ µn(C) for all
j < (n− k), since rankBBc ≤ rankB ≤ k, hence µj(BBc) must be zero for j < (n− k).

Since C = A−B, Weyl’s inequalities imply that

|µj(A)− µj(B)| ≤ max{|µ1(A−B)|, |µn(A−B)|} = ρ(A−B).

Therefore, with the substitutions A← A + E, B ← A, we obtain

(15.8) max-norm Wielandt-Hoffman: If A and E are both hermitian, then

max
j
|µj(A + E)− µj(A)| ≤ max

j
|µj(E)|.

A corresponding statement involving 2-norms is valid but much harder to prove.
Finally, a totally different application of the MMM Theorem is

(15.9) Sylvester’s Law of Inertia: Any two congruent hermitian matrices have the same
number of positive, zero, and negative eigenvalues.

Proof: It is sufficient to prove that if B = V cAV for some hermitian A and some invertible
V , then µj(A) > 0 implies µj(B) > 0. For this, we observe that, by the MMM Theorem, µj(A) > 0
implies that RA is positive somewhere on every j-dimensional subspace, while (also by the MMM
Theorem), for some j-dimensional subspace H ,

µj(B) = max
x∈H

RB(x) = max
x∈H

RA(V x)RV cV (x),

and this is necessarily positive, since dimV H = j and RV cV (x) = ‖V x‖2/‖x‖2 is positive for any
x 6= 0.

It follows that we don’t have to diagonalize the real symmetric matrix A (as we did in the
proof of (15.2)Proposition) in order to find out whether or not A or the corresponding quadratic
form qA is definite. Assuming that A is invertible, hence has no zero eigenvalue, it is sufficient to
use Gauss elimination without pivoting to obtain the factorization A = LDLc, with L unit lower
triangular. By Sylvester’s Law of Inertia, the number of positive (negative) eigenvalues of A equals
the number of positive (negative) diagonal entries of D.

This fact can be used to locate the eigenvalues of a real symmetric matrix by bisection. For,
the number of positive (negative) diagonal entries in the diagonal matrix Dµ obtained in the fac-
torization LµDµLµ

c for (A − µ id) tells us the number of eigenvalues of A to the right (left) of µ,
hence makes it easy to locate and refine intervals that contain just one eigenvalue of A.
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