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(2.2) Definition of pointwise vector operations:

(a) The sum f + g of f, g ∈ IFT is the function

f + g : T → IF : t 7→ f(t) + g(t).

(s) The product αf of the scalar α ∈ IF with the function f ∈ IFT is the function

αf : T → IF : t 7→ αf(t).

With respect to these operations, IFT is a linear space (over IF). In particular, the function

0 : T → IF : t 7→ 0

is the neutral element, or zero vector, and, for f ∈ IFT ,

−f : T → IF : t 7→ −f(t)

is the additive inverse for f .

Note that it is not possible to add two functions unless they have the same domain!
Standard examples include:
(i) T = n, in which case we get n-dimensional coordinate space IFn whose elements (vectors) we

call n-vectors.
(ii) T = m × n, in which case we get the space IFm×n, whose elements we call m-by-n matrices.
(iii) T = IR, IF = IR, in which case we get the space of all real-valued functions on the real line.
(iv) T = IRn, IF = IR, in which case we get the space of all real-valued functions of n real variables.
The most common way to get a vector space is as a linear subspace:

Definition: A nonempty subset Y of a vector space X is a linear subspace (of X) in case it is closed
under addition and multiplication by a scalar. This means that the two sets

Y + Y := {y + z : y, z ∈ Y } and IFY := {αy : α ∈ IF, y ∈ Y }

are in Y .

Standard examples include:
(i) The trivial space {0}, consisting of the zero vector alone; it’s a great space for testing one’s

understanding.
(ii) Πk := the set of all polynomials of degree ≤ k as a subset of IFIF.
(iii) The set C[a . . b] of all continuous functions on the interval [a . . b].
(iv) The set of all real symmetric matrices of order n as a subset of IRn×n.
(v) The set of all real-valued functions on IR that vanish on some fixed set S.
(vi) The set BLξ ⊂ C[ξ1 . . ξ`+1] of all broken lines with (interior) breaks at ξ2 < · · · < ξ`.
It is a good exercise to check that, according to the abstract definition of a vector space, any linear

subspace of a vector space is again a vector space. Conversely, if a subset of a vector space is not closed
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20 2. Vector spaces and linear maps

under vector addition or under multiplication by scalars, then it cannot be a vector space (with respect
to the given operations) since it violates the basic assumption that the sum of any two elements and the
product of any scalar with any element is again an element of the space. (To be sure, the empty subset {}
of a linear space is vacuously closed under the two vector operations but fails to be a linear subspace since
it fails to be nonempty.)

Proposition: A subset Y of a vector space X is a vector space (with respect to the same addition
and multiplication by scalars) if and only if Y is a linear subspace (of X), i.e., Y is nonempty and is
closed under addition and multiplication by scalars.

Corollary: The sum, Y + Z := {y + z : y ∈ Y, z ∈ Z}, and the intersection, Y ∩ Z, of two linear
subspaces, Y and Z, of a vector space is a linear subspace.

We saw that pointwise addition and multiplication by a scalar makes the collection IFT of all maps from
some set T to the scalars a vector space. The same argument shows that the collection XT of all maps from
some set T into a vector space X (over the scalar field IF) is a vector space under pointwise addition and
multiplication by scalars. This means, explicitly, that we define the sum f + g of f, g ∈ XT by

f + g : T → X : t 7→ f(t) + g(t)

and define the product αf of f ∈ XT with the scalar α ∈ IF by

αf : T → X : t 7→ αf(t).

Thus, we can generate from one vector space X many different vector spaces, namely all the linear
subspaces of the vector space XT , with T an arbitrary set.

2.1 For each of the following sets of real-valued assignments or maps, determine whether or not they form a vector space
(with respect to pointwise addition and multiplication by scalars), and give a reason for your answer. (a) {x ∈ IR3 : x1 = 4};
(b) {x ∈ IR3 : x1 = x2}; (c) {x ∈ IR3 : 0 ≤ xj , j = 1, 2, 3}; (d) {(0, 0, 0)}; (e) {x ∈ IR3 : x 6∈ IR3}; (f) C[0 . . 2]; (g) The collection
of all 3×3 matrices with all diagonal entries equal to zero.

2.2 Prove that, for every x in the vector space X, (−1)x = −x, and 0x = 0.

2.3 Prove that the intersection of any collection of linear subspaces of a vector space is a linear subspace.

2.4 Prove: The union of two linear subspaces is a linear subspace if and only if one of them contains the other.

2.5 Provide a proof of the above Proposition.

Linear maps

Definition: Let X, Y be vector spaces (over the same scalar field IF). The map f : X → Y is called
linear if it is
(a) additive, i.e.,

∀{x, z ∈ X} f(x + z) = f(x) + f(z);

and
(s) homogeneous, i.e.,

∀{x ∈ X, α ∈ IF} f(αx) = αf(x).

We denote the collection of all linear maps from X to Y by

L(X, Y ).
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Linear maps 21

Many books call a linear map a linear transformation or a linear operator. It is customary to
denote linear maps by capital letters. Further, if A is a linear map and x ∈ domA, then it is customary to
write Ax instead of A(x).

Examples: If X is a linear subspace of IFT , then, for every t ∈ T , the map

δt : X → IF : f 7→ f(t)

of evaluation at t is linear since the vector operations are pointwise.
The map D : C(1)(IR) → C(IR) : g 7→ Dg that associates with each continuously differentiable function

g its first derivative Dg is a linear map.

The map C[a . . b] → IR : g 7→ ∫ b

a g(t) dt is linear.
Let c := {a : IN → IF : limn→∞ an exists}, i.e., c is the vector space of all convergent sequences. Then

the map c → IF : a 7→ limn→∞ an is linear.
These examples show that the basic operations in Calculus are linear. This is the reason why so many

people outside Algebra, such as Analysts and Applied Mathematicians, are so interested in Linear Algebra.
The simplest linear map on a vector space X to a vector space Y is the so-called trivial map. It is the

linear map that maps every element of X to 0; it is, itself, denoted by

0.

It is surprising how often this map serves as a suitable illustration or counterexample.

Example: If a ∈ IRn, then

(2.3) at : IRn → IR : x 7→ atx := a1x1 + a2x2 + · · · + anxn

is a linear map of great practical importance. Indeed, any (real) linear algebraic equation in n unknowns
has the form

at? = b

for some coefficient vector a ∈ IRn and some right side b ∈ IR. Such an equation has solutions for
arbitrary b if and only if a 6= 0. You have already learned that the general solution can always be written as
the sum of a particular solution and an arbitrary solution of the corresponding homogeneous equation

at? = 0.

In particular, the map at cannot be 1-1 unless n = 1.
Assume that a 6= 0. For n = 2, it is instructive and easy to visualize the solution set as a straight line,

parallel to the straight line
null at := {x ∈ IR2 : atx = 0}

through the origin formed by all the solutions to the corresponding homogeneous problem, and perpendicular
to the coefficient vector a. Note that the ‘nullspace’ nullat splits IR2 into the two half-spaces

{x ∈ IR2 : atx > 0} {x ∈ IR2 : atx < 0},

one of which contains a. Here is such a figure, for the particular equation

2x1 + 3x2 = 6.
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22 2. Vector spaces and linear maps

3

2

a

atx < 0

0 < atx < 6

6 < atx

(2.4) Figure. One way to visualize all the parts of the equation atx = 6
with a = (2, 3).

By adding or composing two linear maps (if appropriate) or by multiplying a linear map by a scalar,
we obtain further linear maps. Here are the details.

The (pointwise) sum A+B of A, B ∈ L(X, Y ) and the product αA of α ∈ IF with A ∈ L(X, Y ) are again
in L(X, Y ), hence L(X, Y ) is closed under (pointwise) addition and multiplication by a scalar, therefore a
linear subspace of the vector space Y X of all maps from X into the vector space Y .

L(X, Y ) is a vector space under pointwise addition and multiplication by a scalar.

Linearity is preserved not only under (pointwise) addition and multiplication by a scalar, but also under
map composition.

The composition of two linear maps is again linear (if it is defined).

Indeed, if A ∈ L(X, Y ) and B ∈ L(Y, Z), then BA maps X to Z and, for any x, y ∈ X ,

(BA)(x + y) = B(A(x + y)) = B(Ax + Ay) = B(Ax) + B(Ay) = (BA)(x) + (BA)(y).

Also, for any x ∈ X and any scalar α,

(BA)(αx) = B(A(αx)) = B(αAx) = αB(Ax) = α(BA)(x).

2.6 For each of the following maps, determine whether or not it is linear (give a reason for your answer).

(a) Π<k → IN : p 7→ #{x : p(x) = 0} (i.e., the map that associates with each polynomial of degree < k the number of its
zeros).

(b) C[a . . b] → IR : f 7→ maxa≤x≤b f(x)

(c) IF3×4 → IF : A 7→ A(2, 2)

(d) L(X, Y ) → Y : A 7→ Ax, with x a fixed element of X (and, of course, X and Y vector spaces).

(e) IRm×n → IRn×m : A 7→ Ac (with Ac the (conjugate) transpose of the matrix A)
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(f) IR → IR2 : x 7→ (x, sin(x))

2.7 The linear image of a vector space is a vector space: Let f : X → T be a map on some vector space X into some set
T on which addition and multiplication by scalars is defined in such a way that

(2.5) f(αx + βy) = αf(x) + βf(y), α, β ∈ IF, x, y ∈ X.

Prove that ran f is a vector space (with respect to the addition and multiplication as restricted to ran f). (See Problem 4.17

for an important application.)

Linear maps from IFn

As a ready source of many examples, we now give a complete description of L(IFn, X).

For any sequence v1, v2, . . . , vn in the vector space X , the map

f : IFn → X : a 7→ v1a1 + v2a2 + · · · + vnan

is linear.

Proof: The proof is a boring but necessary verification.
(a) additivity:

f(a + b) = v1 (a + b)1 + v2 (a + b)2 + · · · + vn (a + b)n (definition of f)
= v1 (a1 + b1) + v2 (a2 + b2) + · · · + vn (an + bn) (addition of n-vectors)
= v1a1 + v1b1 + v2a2 + v2b2 + · · · + vnan + vnbn (multipl. by scalar distributes)
= v1a1 + v2a2 + · · · + vnan + v1b1 + v2b2 + · · · + vnbn (vector addition commutes)
= f(a) + f(b) (definition of f)

(s) homogeneity:

f(αa) = v1 (αa)1 + v2 (αa)2 + · · · + vn (αa)n (definition of f)
= v1αa1 + v2αa2 + · · · + vnαan (multipl. of scalar with n-vectors)
= α(v1a1 + v2a2 + · · · + vnan) (multipl. by scalar distributes)
= αf(a) (definition of f)

Definition: The weighted sum
v1a1 + v2a2 + · · · + vnan

is called the linear combination of the vectors v1, v2, . . . , vn with weights a1, a2, . . . , an. I will
use the suggestive abbreviation

[v1, v2, . . . , vn]a := v1a1 + v2a2 + · · · + vnan,

hence use
[v1, v2, . . . , vn]

for the map IFn → X : a 7→ v1a1 + v2a2 + · · · + vnan. I call such a map a column map, and call vj

its jth column. Further, I denote its number of columns by

#V.
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24 2. Vector spaces and linear maps

The most important special case of this occurs when also X is a coordinate space, X = IFm say. In this
case, each vj is an m-vector, and

v1a1 + v2a2 + · · · + vnan = V a,

with V the m × n-matrix with columns v1, v2, . . . , vn. This explains why I chose to write the weights in
the linear combination v1a1 + v2a2 + · · · + vnan to the right of the vectors vj rather than to the left. For,
it suggests that working with the map [v1, v2, . . . , vn] is rather like working with a matrix with columns
v1, v2, . . . , vn.

Note that MATLAB uses the notation [v1, v2, . . . , vn] for the matrix with columns v1, v2, . . . , vn, as
do some textbooks. This stresses the fact that it is customary to think of the matrix C ∈ IFm×n with
columns c1, c2, . . . , cn as the linear map [c1, c2, . . . , cn] : IFn → IFm : x 7→ c1x1 + c2x2 + · · · + cnxn.

Agreement: For any sequence v1, v2, . . . , vn of m-vectors,

[v1, v2, . . . , vn]

denotes both the m × n-matrix V with columns v1, v2, . . . , vn and the linear map

V : IFn → IFm : a 7→ [v1, v2, . . . , vn]a = v1a1 + v2a2 + · · · + vnan.

Thus,
IFm×n = L(IFn, IFm).

Thus, a matrix V ∈ IFm×n is associated with two rather different maps: (i) since it is an assignment
with domain m×n and values in IF, we could think of it as a map on m×n to IF; (ii) since it is the n-list of
its columns, we can think of it as the linear map from IFn to IFm that carries the n-vector a to the m-vector
V a = v1a1 + v2a2 + · · ·+ vnan. From now on, we will stick to the second interpretation when we talk about
the domain, the range, or the target, of a matrix. Thus, for V ∈ IFm×n, domV = IFn and tarV = IFm, and
ranV ⊂ IFm. – If we want the first interpretation, we call V ∈ IFm×n a (two-dimensional) array.

Next, we prove that there is nothing special about the linear maps of the form [v1, v2, . . . , vn] from IFn

into the vector space X , i.e., every linear map from IFn to X is necessarily of that form. The identity map

idn : IFn → IFn : a → a

is of this form, i.e.,
idn = [e1, e2, . . . , en]

with ej the jth unit vector, i.e.,
ej := (0, . . . , 0︸ ︷︷ ︸

j−1 zeros

, 1, 0, . . . , 0)

the vector (with the appropriate number of entries) all of whose entries are 0, except for the jth, which is 1.
Written out in painful detail, this says that

a = e1a1 + e2a2 + · · · + enan, ∀a ∈ IFn.

Further,

(2.6) Proposition: If V = [v1, v2, . . . , vn] : IFn → X and f ∈ L(X, Y ), then fV = [f(v1), . . . , f(vn)].

19aug02 c©2002 Carl de Boor



Linear maps from IFn
25

Proof: If dom f = X and f is linear, then fV is linear and, for any a ∈ IFn,

(fV )a = f(V a) = f(v1a1 + v2a2 + · · · + vnan) = f(v1)a1 + f(v2)a2 + · · · + f(vn)an = [f(v1), . . . , f(vn)]a.

Consequently, for any f ∈ L(IFn, X),

f = f idn = f [e1, e2, . . . , en] = [f(e1), . . . , f(en)].

This proves:

(2.7) Proposition: The map f from IFn to the vector space X is linear if and only if

f = [f(e1), f(e2), . . . , f(en)].

In other words,
L(IFn, X) = {[v1, v2, . . . , vn] : v1, v2, . . . , vn ∈ X} (' Xn).

As a simple example, recall from (2.3) the map at : IRn → IR : x 7→ a1x1 + a2x2 + · · · + anxn =
[a1, . . . , an]x, and, in this case, atej = aj , all j. This confirms that at is linear and shows that

(2.8) at = [a1, . . . , an] = [a]t.

Notation: I follow MATLAB notation. E.g., [V, W ] denotes the column map in which first all the
columns of V are used and then all the columns of W . Also, if V and W are column maps, then I write

V ⊂ W

to mean that V is obtained by omitting (zero or more) columns from W ; i.e., V = W (:, c) for some subse-
quence c of 1:#W .

Finally, if W is a column map and M is a set, then I’ll write

W ⊂ M

to mean that the columns of W are elements of M . For example:

(2.9) Proposition: If Z is a linear subspace of Y and W ∈ L(IFm, Y ), then W ⊂ Z =⇒ ranW ⊂ Z.

The important (2.6)Proposition is the reason we define the product of matrices the way we do, namely
as

(AB)(i, j) :=
∑

k

A(i, k)B(k, j), ∀i, j.

For, if A ∈ IFm×n = L(IFn, IFm) and B = [b1, b2, . . . , br] ∈ IFn×r = L(IFr, IFn), then AB ∈ L(IFr, IFm) =
IFm×r, and

AB = A[b1, b2, . . . , br] = [Ab1, . . . , Abr].

Notice that the product AB of two maps A and B makes sense if and only if domA ⊃ tarB. For matrices
A and B, this means that the number of columns of A must equal the number of rows of B; we couldn’t
apply A to the columns of B otherwise.
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26 2. Vector spaces and linear maps

In particular, the 1-column matrix [Ax] is the product of the matrix A with the 1-column matrix [x],
i.e.,

A[x] = [Ax], ∀A ∈ IFm×n, x ∈ IFn.

For this reason, most books on elementary linear algebra and most users of linear algebra identify the n-
vector x with the n× 1-matrix [x], hence write simply x for what I have denoted here by [x]. I will feel free
from now on to use the same identification. However, I will not be doctrinaire about it. In particular, I will
continue to specify a particular n-vector x by writing down its entries in a list, like x = (x1, x2, . . .), since
that uses much less space than does the writing of

[x] =


x1

x2
...


 .

It is consistent with the standard identification of the n-vector x with the n × 1-matrix [x] to mean by
xt the 1 × n-matrix [x]t. Further, with y also an n-vector, one identifies the (1, 1)-matrix [x]t[y] = xty with
the scalar ∑

j

xjyj = ytx.

On the other hand,
yxt = [y][x]t = (yixj : (i, j) ∈ n × n)

is an n × n-matrix (and identified with a scalar only if n = 1).
However, I will not use the terms ‘column vector’ or ‘row vector’, as they don’t make sense to me. Also,

whenever I want to stress the fact that x or xt is meant to be a matrix, I will write [x] and [x]t, respectively.
For example, what about the expression xytz in case x, y, and z are vectors? It makes sense only if y

and z are vectors of the same length, say y, z ∈ IFn. In that case, it is [x][y]t[z], and this we can compute in
two ways: we can apply the matrix xyt to the vector z, or we can multiply the vector x with the scalar ytz.
Either way, we obtain the vector x(ytz) = (ytz)x, i.e., the (ytz)-multiple of x. However, while the product
x(ytz) of x with (ytz) makes sense both as a matrix product and as multiplication of the vector x by the
scalar ytz, the product (ytz)x only makes sense as a product of the scalar ytz with the vector x.

(2.10) Example: Here is an example, of help later. Consider the socalled elementary row opera-
tion

Ei,k(α)

on n-vectors, in which one adds α times the kth entry to the ith entry. Is this a linear map? What is a
formula for it?

We note that the kth entry of any n-vector x can be computed as ek
tx, while adding β to the ith entry

of x is accomplished by adding βei to x. Hence, adding α times the kth entry of x to its ith entry replaces
x by x + ei(αek

tx) = x + αeiek
tx. This gives the handy formula

(2.11) Ei,k(α) = idn + αeiek
t.

Now, to check that Ei,j(α) is linear, we observe that it is the sum of two maps, and the first one, idn, is
certainly linear, while the second is the composition of the three maps,

ek
t : IFn → IF ' IF1 : z 7→ ek

tz, [ei] : IF1 → IFn : β → eiβ, α : IFn → IFn : z 7→ αz,

and each of these is linear (the last one because we assume IF to be a commutative field).
Matrices of the form

(2.12) Ey,z(α) := id + αyzt

are called elementary. They are very useful since, if invertible, their inverse has the same simple form; see
(2.19)Proposition below.

19aug02 c©2002 Carl de Boor



The linear equation A? = y, and ranA and null A 27

2.8 Use the fact that the jth column of the matrix A is the image of ej under the linear map A to construct the matrices
that carry out the given action.

(i) The matrix A of order 2 that rotates the plane clockwise 90 degrees;

(ii) The matrix B that reflects IRn across the hyperplane {x ∈ IRn : xn = 0};
(iii) The matrix C that keeps the hyperplane {x ∈ IRn : xn = 0} pointwise fixed, and maps en to −en;

(iv) The matrix D of order 2 that keeps the y-axis fixed and maps (1, 1) to (2, 1).

2.9 Use the fact that the jth column of the matrix A ∈ IFm×n is the image of ej under A to derive the four matrices

A2, AB, BA, and B2 for each of the given pair A and B: (i) A = [e1, 0], B = [0, e1]; (ii) A = [e2, e1], B = [e2,−e1]; (iii)
A = [e2, e3, e1], B = A2.

2.10 For each of the following pairs of matrices A, B, determine their products AB and BA if possible, or else state why
it cannot be done.

(a) A =

[
1 −1 1
1 1 1

]
, B the matrix eye(2); (b) A =

[
2 1 4
0 1 2

]
, B = At; (c) A =

[
2 1 4
0 1 2
0 0 −1

]
, B =

[−1 −1 2
0 2 −1
0 0 3

]
;

(d) A =

[
2 + i 4 − i
3 − i 3 + i

]
, B =

[
2 − i 3 + i 3i
3 − i 4 + i 2

]
.

2.11 For any A, B ∈ L(X), the products AB and BA are also linear maps on X, as are A2 := AA and B2 := BB. Give
an example of A, B ∈ L(X) for which (A+B)2 does not equal A2 +2AB +B2. (Hint: keep it as simple as possible, by choosing
X to be IR2, hence both A and B are 2-by-2 matrices.)

2.12 Give an example of matrices A and B for which both AB = 0 and BA = 0, while neither A nor B is a zero matrix.

2.13 Prove: If A and B are matrices with the same number of rows, and C and D are such that AC and BD are defined,
then the product of the two partitioned matrices [A,B] and [C; D] is defined and equals AB + CD.

2.14 Prove that both C → IR : z 7→ Re z and C → IR : z 7→ Im z are linear maps when we consider C as a vector space

over the real scalar field.

The linear equation A? = y, and ranA and nullA

We are ready to recognize and use the fact that the general system

(2.13)

a11x1 + a12x2 + · · · + a1nxn = y1

a21x1 + a22x2 + · · · + a2nxn = y2

· · · = ·
am1x1 + am2x2 + · · · + amnxn = ym

of m linear equations in the n unknowns x1, . . . , xn is equivalent to the vector equation

Ax = y,

provided

x := (x1, . . . , xn), y := (y1, . . . , ym), A :=




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 .

Here, equivalence means that the entries x1, . . . , xn of the n-vector x solve the system of linear equations
(2.13) if and only if x solves the vector equation A? = y. This equivalence is not only a notational convenience.
Switching from (2.13) to A? = y is the conceptual shift that started Linear Algebra. It shifts the focus, from
the scalars x1, . . . , xn, to the vector x formed by them, and to the map A given by the coefficients in (2.13),
its range and nullspace (about to be defined), and this makes for simplicity, clarity, and generality.

To stress the generality, we now give a preliminary discussion of the equation

A? = y

in case A is a linear map, from the vector space X to the vector space Y say, with y some element of Y .
Existence of a solution for every y ∈ Y is equivalent to having A be onto, i.e., to having ranA = Y .

Now, the range of A is the linear image of a vector space, hence itself a vector space. Indeed, if v1, v2, . . . , vm

19aug02 c©2002 Carl de Boor



28 2. Vector spaces and linear maps

are elements of ranA, then there must be a sequence w1, w2, . . . , wm in X with Awj = vj , all j. Since
X is a vector space, it contains Wa for arbitrary a ∈ IFm, therefore the corresponding linear combination
V a = [Aw1, Aw2, . . . , Awm]a = (AW )a = A(Wa) must be in ranA. In other words, if V ⊂ ranA, then
ranV ⊂ ranA.

Hence, if we wonder whether A is onto, and we happen to know an onto column map [v1, v2, . . . , vm] =
V ∈ L(IFm, Y ), then we only have to check that the finitely many columns, v1, v2, . . . , vm, of V are in
ranA. For, if some are not in ranA, then, surely, A is not onto. However, if they all are in ranA, then
Y = ranV ⊂ ranA ⊂ tarA = Y , hence ranA = Y and A is onto.

(2.14)Proposition: The range of a linear map A ∈ L(X, Y ) is a linear subspace, i.e., is nonempty
and closed under vector addition and multiplication by a scalar.

If Y is the range of the column map V , then A is onto if and only if the finitely many columns of
V are in ranA.

Uniqueness of a solution for every y ∈ Y is equivalent to having A be 1-1, i.e., to have Ax = Az imply
that x = z. For a linear map A : X → Y , we have Ax = Az if and only if A(x − z) = 0. In other words, if
y = Ax, then

(2.15) A−1{y} = x + {z ∈ X : Az = 0}.
In particular, A is 1-1 if and only if {z ∈ X : Az = 0} = {0}. In other words, to check whether a linear map
is 1-1, we only have to check whether it is 1-1 ‘at’ one particular point, e.g., ‘at’ 0. For this reason, the set
{z ∈ X : Az = 0} of all elements of X mapped by A to 0 is singled out.

Definition: The set
null A := {z ∈ domA : Az = 0}

is called the nullspace or kernel of the linear map A.
The linear map is 1-1 if and only if its nullspace is trivial, i.e., contains only the zero vector.
The nullspace of a linear map is a linear subspace.

Almost all linear subspaces you’ll meet will be of the form ranA or nullA for some linear map A. These
two ways of specifying a linear subspace are very different in character.

If we are told that our linear subspace Z of X is of the form nullA, for a certain linear map A on X ,
then we know, offhand, exactly one element of Z for sure, namely the element 0 which lies in every linear
subspace. On the other hand, it is easy to test whether a given x ∈ X lies in Z = null A: simply compute
Ax and check whether it is the zero vector.

If we are told that our linear subspace Z of X is of the form ranA for some linear map from some U
into X , then we can ‘write down’ explicitly every element of ranA: they are all of the form Au for some
u ∈ domA. On the other hand, it is much harder to test whether a given x ∈ X lies in Z = ranA: Now we
have to check whether the equation A? = x has a solution (in U).

As a simple example, the vector space Πk of all polynomials of degree ≤ k is usually specified as the
range of the column map

[()0, ()1, . . . , ()k] : IRk+1 → IRIR,

with
()j : IR → IR : t 7→ tj

a convenient (though non-standard!) notation for the monomial of degree j, i.e., as the collection of all
real-valued functions that are of the form

t 7→ a0 + a1t + · · · + aktk
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