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for some coefficient-vector a. On the other hand, Πk can also be defined as null Dk+1, i.e., as the collection
of all real-valued functions that are k+1-times continuously differentiable and have their (k+1)st derivative
identically zero.

(2.16) Remark: The nullspace nullA of the linear map A : X → Y consists exactly of the solutions
to the homogeneous equation

A? = 0.

The linear equation A? = y is readily associated with a homogeneous linear equation, namely the equation

[A, y]? = 0,

with
[A, y] : X × IF : (z, α) 7→ Az + yα.

If Ax = y, then (x,−1) is a nontrivial element of null[A, y]. Conversely, if (z, α) ∈ null[A, y] and α 6= 0, then
z/(−α) is a solution to A? = y. Hence, for the construction of solutions to linear equations, it is sufficient
to know how to solve homogeneous linear equations, i.e., how to construct the nullspace of a linear map.

2.15 For each of the following systems of linear equations, determine A and y of the equivalent vector equation A? = y.

(a)
2x1 − 3x2 = 4
4x1 + 2x2 = −6

; (b)
2u1 − 3u2 = 4
4u1 + 2u2 = −6

; (c)
−4c = 16

2a + 3b = 9
.

2.16 For each of the following A and y, write out a system of linear equations equivalent to the vector equations A? = y.

(a) A =

[
2 3
6 4
e −2

]
, y = (9,−√

3, 1); (b) A =

[
1 2 3 4
4 3 2 1

]
, y = (10, 10). (c) A = [] ∈ IR0×3, y = () ∈ IR0.

Inverses

We have agreed to think of the matrix A ∈ IFm×n as the column map [A(:, 1), . . . , A(:, n)], i.e., as the
linear map IFn → IFm : a 7→ Aa :=

∑
j A(:, j)aj . For this reason, it is also customary to refer to the range

ranA of a matrix A as the column space of that matrix, while the range ranAt of its transpose is known as
its row space. Further, we have found that, in these terms, the matrix product AB is also the composition
A ◦B, i.e.,

(A ◦B)a = A(B(a)) = (AB)a =
∑

j

(AB)(:, j)aj .

In these terms, the identity map idn on IFn corresponds to the identity matrix [e1, e2, . . . , en], hence the
name for the latter.

(2.17) Proposition: The inverse of a linear map is again a linear map.

Proof: Let A ∈ L(X, Y ) be invertible and y, z ∈ Y . By additivity of A, A(A−1y + A−1z) =
A(A−1y) + A(A−1z) = y + z. Hence, applying A−1 to both sides, we get A−1y + A−1z = A−1(y + z), thus
A−1 is additive. Also, from A(αA−1y) = αA(A−1y) = αy, we conclude that αA−1y = A−1(αy), hence A−1

is homogeneous.

Thus, if A ∈ IFn×n is invertible (as a linear map from IFn to IFn), then also its inverse is a linear map
(from IFn to IFn), hence a square matrix of order n. We call it the inverse matrix for A, and denote it by
A−1. Being the inverse for A, it is both a right and a left inverse for A, i.e., it satisfies

A−1A = idn = AA−1.

More generally, we would call A ∈ IFm×n invertible if there were B ∈ IFn×m so that

AB = idm and BA = idn.
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30 2. Vector spaces and linear maps

However, we will soon prove (cf. (3.17)) that this can only happen when m = n.
We will also soon prove (cf. (3.16)Theorem below) the pigeonhole principle for square matrices, i.e.,

that a linear map from IFn to IFn is 1-1 if and only if it is onto. In other words, if A, B ∈ IFn×n and, e.g.,
AB = idn, hence A is onto, then A must also be 1-1, hence invertible, and therefore its right inverse must
be its inverse, therefore we must also have BA = idn. In short:

(2.18) Amazing Fact: If A, B ∈ IFn×n and AB = idn, then also BA = idn.

To me, this continues to be one of the most remarkable results in basic Linear Algebra. Its proof
uses nothing more than the identification of matrices with linear maps (between coordinate spaces) and the
numerical process called elimination, for solving a homogeneous linear system A? = 0, i.e., for constructing
null A.

In preparation, and as an exercise in invertible matrices, we verify the following useful fact about
elementary matrices.

(2.19) Proposition: For x, y ∈ IFn and α ∈ IF, the elementary matrix

Ey,z(α) = idn + αyzt

is invertible if and only if 1 + αzty 6= 0, and, in that case

(2.20) Ey,z(α)−1 = Ey,z(
−α

1 + αzty
).

Proof: We compute Ey,z(α)Ey,z(β) for arbitrary α and β. Since

αyzt βyzt = αβ (zty) yzt,

we conclude that

Ey,z(α)Ey,z(β) = ( idn + αyzt)( idn + βyzt) = idn + (α + β + αβ(zty))yzt.

In particular, since the factor (α + β + αβ(zty)) is symmetric in α and β, we conclude that

Ey,z(α)Ey,z(β) = Ey,z(β)Ey,z(α).

Further, if 1 + αzty 6= 0, then the choice

β =
−α

1 + αzty

will give α + β + αβ(zty) = 0, hence Ey,z(β)Ey,z(α) = Ey,z(α)Ey,z(β) = idn. This proves that Ey,z(α) is
invertible, with its inverse given by (2.20).

Conversely, assume that 1 + αzty = 0. Then y 6= 0, yet

Ey,z(α)y = y + α(zty)y = 0,

showing that Ey,z(α) is not 1-1 in this case, hence not invertible.
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2.17 Prove: If two matrices commute (i.e., AB = BA), then they are square matrices, of the same order.

2.18 Give a noninvertible 2-by-2 matrix without any zero entries.

2.19 Prove that the matrix A :=

[
1 2
4 −1

]
satisfies the equation A2 = 9 id2. Use this to show that A is invertible, and

to write down the matrix A−1.

2.20 Prove: The matrix A :=

[
a b
c d

]
is invertible if and only if ad 6= bc, in which case

[
d −b
−c a

]
/(ad − bc) is its

inverse.

2.21 Consider the map f : C → IR2 : z = a + ib 7→
[

a −b
b a

]
. Show that f is a 1-1 linear map when we think of C as a

vector space over the real scalar field.

2.22 Let A, B ∈ L(X). Show that (AB)2 = A2B2 can hold without necessarily having AB = BA. Show also that
(AB)2 = A2B2 implies that AB = BA in case both A and B are invertible.

2.23 Give an example of matrices A and B, for which both AB and BA are defined and for which AB = id, but neither
A nor B is invertible.

2.24 Prove: If A and C are invertible matrices, and B has as many rows as does A and as many columns as does C, then
also [A,B; 0, C] is invertible and

[A, B; 0, C]−1 =

[
A B
0 C

]−1

=

[
A−1 −A−1BC−1

0 C−1

]
.

2.25 Use (2.19)Proposition to prove the Sherman-Morrison Formula: If A ∈ IFn×n is invertible and y, z ∈ IFn are
such that α := 1 + ztA−1y 6= 0, then A + yzt is invertible, and

(A + yzt)−1 = A−1 − α−1A−1yztA−1.

(Hint: A + yzt = A( id + (A−1y)zt).)

2.26 Prove the Woodbury generalization of the Sherman-Morrison Formula: if A and id + DtAC are invertible, then
so is A + CDt, and

(A + CDt)−1 = A−1 − A−1C( id + DtA−1C)−1DtA−1.

2.27 T/F

(a) If A, B ∈ L(X, Y ) are both invertible, then so is A + B.

(b) If AB = 0 for A, B ∈ IFn×n, then B = 0.

(c) If A and B are matrices with AB = idm and BA = idn, then B = A−1.

(d) If A =

[
B C
0 0

]
with both A and B square matrices and 0 standing for zero matrices of the appropriate size, then

An =

[
Bn Bn−1C
0 0

]
for all n.

(e) If A ∈ IRm×n and AtA = 0, then A = 0.

(f) If the matrix product AB is defined, then (AB)t = AtBt.

(g) If A is an invertible matrix, then so is At, and (At)−1 = (A−1)t.

(h)

[
1 0 0
0 1 1
0 0 1

]
is an elementary matrix.

(i) If Y is a subset of some vector space X, x, y, z are particular elements of X, and x and 2y − 3x are in Y , but 3y − 2x and

y are not, then Y cannot be a linear subspace.
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32 3. Elimination, or: The determination of null A and ranA

3. Elimination, or: The determination of null A and ranA

Elimination and Backsubstitution

Elimination has as its goal an efficient description of the solution set for the homogeneous linear system
A? = 0, i.e., of the nullspace of the matrix A. It is based on the following observation:

(3.1) Lemma: If B is obtained from A by subtracting some multiple of some row of A from some
other row of A, then null B = nullA.

Proof: Assume, more specifically, that B is obtained from A by subtracting α times row k from
row i, for some k 6= i. Then, by (2.10)Example,

B = Ei,k(−α)A,

with Ei,k(−α) = idm − αeiek
t. Consequently, nullB ⊃ null A, and this holds even if i = k.

However, since i 6= k, we have ek
tei = 0, hence, for any α, 1 + α(ek

tei) = 1 6= 0. Therefore, by (2.19),
also

Ei,k(α)B = A,

hence also null B ⊂ null A.

One solves the homogeneous linear system A? = 0 by elimination. This is an inductive process, and it
results in a classification of the unknowns as free or bound. A bound unknown has associated with it a pivot
row or pivot equation which determines this unknown uniquely once all later unknowns are determined.
Any unknown without a pivot equation is a free unknown; its value can be chosen arbitrarily. We call the
jth column of A bound (free) if the jth unknown is bound (free). The classification proceeds inductively,
from the first to the last unknown or column, i.e., for k = 1, 2, . . ., with the kth step as follows.

At the beginning of the kth elimination step, we have in hand a matrix B, called the working-array,
which is equivalent to our initial matrix A in that nullB = null A. Further, we have already classified the
first k − 1 unknowns as either bound or free, with each bound unknown associated with a particular row
of B, its pivot row, and this row having a nonzero entry at the position of its associated bound unknown
and zero entries for all previous unknowns. All other rows of B are nonpivot rows; they do not involve the
unknowns already classified, i.e., they have nonzero entries only for unknowns not yet classified. (Note that,
with the choice B := A, this description also fits the situation at the beginning of the first step.) We now
classify the kth unknown or column and, correspondingly, change B, as follows:

bound case: We call the kth unknown or column bound (some would say basic) in case we can find
some nonpivot row B(h, :) for which B(h, k) 6= 0. We pick one such row and call it the pivot row for the
kth unknown. Further, we use it to eliminate the kth unknown from all the remaining nonpivot rows B(i, :)
by the calculation

B(i, :)← B(i, :)− B(i, k)
B(h, k)

B(h, :).

free case: In the contrary case, we call the kth unknown or column free (some would say nonbasic).
No action is required in this case, since none of the nonpivot rows involves the kth unknown.
By (3.1)Lemma, the changes (if any) made in B will not change nullB. This finishes the kth elimination
step.

For future reference, here is a formal description of the entire algorithm. This description relies on a
sequence p to keep track of which row, if any, is used as pivot row for each of the unknowns. If row h is the
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Elimination and Backsubstitution 33

pivot row for the kth unknown, then p(k) = h after the kth elimination step. Since p is initialized to have
all its entries equal to 0, this means that, at any time, the rows k not yet used as pivot rows are exactly
those for which p(k) = 0.

(3.2) Elimination Algorithm:
input: A ∈ IFm×n.
B ← A, p← (0, . . . , 0) ∈ IRn.
for k = 1:n, do:

for some h 6∈ ran p with B(h, k) 6= 0, do:
p(k)← h
for all i 6∈ ran p, do:

B(i, :)← B(i, :)− B(i, k)
B(h, k)

B(h, :)
enddo

enddo
enddo
output: B, p, and, possibly, free← find(p==0), bound← find(p>0).

Note that nothing is done at the kth step if there is no h 6∈ ran p with B(h, k) 6= 0, i.e., if B(h, k) = 0
for all h 6∈ ran p. In particular, p(k) will remain 0 in that case.

A numerical example: We start with

A :=




0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7
0 1 0 1 3 2 −1 4


 , p = (0, 0, 0, 0, 0, 0, 0, 0).

The first unknown is free. We take the second row as pivot row for the second unknown and eliminate
it from the remaining rows, to get

B =




0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 1 0 −1 1
0 0 0 0 1 0 −1 1


 , p = (0, 2, 0, 0, 0, 0, 0, 0).

Thus the third unknown is free as is the fourth, but the fifth is not, since there are nonzero entries in the
fifth column of some nonpivotal row, e.g., the first row. We choose the first row as pivot row for the fifth
unknown and use it to eliminate this unknown from the remaining nonpivot rows, i.e., from rows 3 and 4.
This gives

B =




0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 −1 1


 , p = (0, 2, 0, 0, 1, 0, 0, 0).

The sixth unknown is free, but there are nonzero entries in the seventh column of the remaining nonpivot
rows, so the seventh unknown is bound, with, e.g., the fourth row as its pivot row. We use that row to
eliminate the seventh unknown from the remaining nonpivot row. This gives

B =




0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1


 , p = (0, 2, 0, 0, 1, 0, 4, 0).

With that, there are no nontrivial nonpivot rows left. In particular, the eighth unknown is free, hence we
have already in hand the final array.

Hence, altogether bound = (2, 5, 7) (= find(p>0)) and free = (1, 3, 4, 6, 8) (= find(p==0)).
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34 3. Elimination, or: The determination of null A and ranA

After the n steps of this elimination process (which started with B = A), we have in hand a matrix
B with nullB = null A and with each unknown classified as bound or free. The two increasing sequences,
bound and free, containing the indices of the bound and free unknowns respectively, will be much used in
the sequel. Each bound unknown has associated with it a particular row of B, its pivot row. All nonpivot
rows of B (if any) are entirely zero.

Neat minds would reorder the rows of B, listing first the pivot rows in order, followed by the nonpivot
rows and, in this way, obtain a row echelon form for A. In any case, in determining x ∈ null B, we
only have to pay attention to the pivot rows. This means that we can determine a particular element x of
null B = null A by backsubstitution, i.e., from its last entry to its first as follows:

For k = n:−1:1, if the kth unknown is bound, i.e., k ∈ bound, determine xk from its pivot equation
(since that equation only involves xk, · · · , xn); else, pick xk arbitrarily (as then the kth unknown is free, i.e.,
k ∈ free).

Here is a more formal description, for future reference.

(3.3) Backsubstitution Algorithm:
input: B ∈ IFm×n and p (both as output from (3.2)), z ∈ IFn.
x← z
for k = n:−1:1, do:

if p(k) 6= 0, then xk ← −
(∑

j>k B(p(k), j)xj

)
/B(p(k), k) endif

enddo
output: x, which is the unique solution of A? = 0 satisfying xi = zi for all i with p(i) = 0.

Notice that the value of every free unknown is arbitrary and that, once these are chosen somehow,
then the bound unknowns are uniquely determined by the requirement that we are seeking an element of
null B = nullA. In other words, the general element of nullB has exactly as many degrees of freedom as
there are free unknowns. Since there are #free unknowns, nullB is said to be ‘of dimension #free’.

In particular, for any k, the kth entry, xk, of an x ∈ null B can be nonzero only in one of two ways: (a)
the kth unknown is free, i.e., k ∈ free; (b) the kth unknown is bound, but xj 6= 0 for some j > k. It follows
that xk can be the rightmost nonzero entry of such an x only if the kth unknown is free. Conversely, if the
kth unknown is free, and x is the element of null B = null A computed by setting xk = 1 and setting all other
free entries equal to 0, then xk is necessarily the rightmost nonzero entry of x (since all free entries to the
right of it were chosen to be zero, thus preventing any bound entry to the right of it from being nonzero).

This proves

(3.4) Observation: There exists x ∈ null A with rightmost nonzero entry xk if and only if the kth
unknown is free.

This simple observation gives a characterization of the sequence free entirely in terms of the nullspace of
the matrix A we started with. This implies that the classification into free and bound unknowns or columns
is independent of all the details of the elimination. More than that, since, for any 1-1 matrix M with m
columns, null(MA) = null A, it implies that, for any such matrix MA, we get exactly the same sequences
free and bound as we would get for A. This is the major reason for the uniqueness of a more disciplined
echelon form, the ‘really reduced row echelon form’, to be discussed in the next section.

Since A(:, k) ∈ ranA(:, [1:k−1]) if and only if there is some x ∈ null A whose rightmost nonzero entry is
its kth, we have the following reformulation of (3.4)Observation and consequences.
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The really reduced row echelon form and other reduced forms 35

(3.5) Corollary:
(i) The kth column of A is free if and only if it is a weighted sum of the columns strictly to the left

of it, i.e., A(:, k) ∈ ranA(:, [1:k − 1]).
(ii) A(:, [1:k]) is 1-1 if and only if all its columns are bound.
(iii) nullA is nontrivial if and only if there are free columns.

Perhaps the most widely used consequence of (iii) here is the following. If there are more unknowns than
equations, then there are not enough equations to go around, i.e., some unknowns must be free, therefore
there are nontrivial solutions to our homogeneous equation A? = 0. We remember this fundamental result
of elimination in the following form:

(3.6) Theorem: Any matrix with more columns than rows has a nontrivial nullspace.

3.1 Determine the bound and free columns for each of the following matrices A.

(a) 0 ∈ IRm×n; (b) [e1, . . . , en] ∈ IRn×n; (c) [e1, 0, e2, 0] ∈ IR6×4; (d)

[
2 2 5 6
1 1 −2 2

]
; (e)

[
0 2 1 4
0 0 2 6
1 0 −3 2

]
; (f) [x][y]t,

with x = (1, 2, 3, 4) = y.

3.2 (3.5)Corollary assures you that y ∈ ran A if and only if the last column of [A,y] is free. Use this fact to determine,
for each of the following y and A, whether or not y ∈ ran A.

(a) y = (π, 1 − π), A =

[
1 −2
−1 2

]
; (b) y = e2, A =

[
1 2 −1
2 3 −4
3 4 −8

]
; (c) y = e2, A =

[
1 2 −1
2 3 −4
3 4 −7

]
.

3.3 Prove (3.1)Lemma directly, i.e., without using (2.19)Proposition. (Hint: Prove that null B ⊃ null A. Then prove that
also A is obtainable from B by the same kind of step, hence also null A ⊃ null B.)

3.4 Prove: If M and A are matrices for which MA is defined and, furthermore, M is 1-1, then MA? = 0 has exactly the

same free and bound unknowns as does A? = 0.

The really reduced row echelon form and other reduced forms

The construction of the really reduced row echelon form takes elimination four steps further, none of
which changes the nullspace:

(i) When the hth pivot row is found, and it is not the hth row, then it is exchanged with the current
hth row to make it the hth row. (This keeps things neat; all the rows not yet used as pivot rows lie below
all the rows already picked as pivot rows.)

(ii) Each pivot row is divided by its pivot element, i.e., by its left-most nonzero entry. (This helps with
the elimination of the corresponding unknown from other rows: if B(h, k) is the pivot element in question
(i.e., bound(h) = k, i.e., xk is the hth bound unknown), then, after this normalization, one merely subtracts
B(i, k) times B(h, :) from B(i, :) to eliminate the kth unknown from row i.)

(iii) One eliminates each bound unknown from all rows (other than its pivot row), i.e., also from pivot
rows belonging to earlier bound unknowns, and not just from the rows not yet used as pivot rows. For real
efficiency, though, this additional step should be carried out after elimination is completed; it starts with
the elimination of the last bound unknown, proceeds to the second-last bound unknown, etc., and ends with
the second bound unknown (the first bound unknown was eliminated from all other rows already).

The resulting matrix B is called the reduced row echelon form for A, and this is written:

B = rref(A).

However, it turns out to be very neat to add the following final step:
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36 3. Elimination, or: The determination of null A and ranA

(iv) Remove all rows that are entirely zero, thus getting the matrix

R := B(1:#bound, :) =: rrref(A)

called the really reduced row echelon form of A.
Here is a formal description (in which we talk about the rrref for A even though we prove its uniqueness

only later, in (3.12)):

(3.7) Definition: We say that R is the really reduced row echelon form for A ∈ IFm×n and
write R = rrref(A), in case R ∈ IFr×n for some r and there is a strictly increasing r-sequence bound
(provided by the MATLAB function rref along with rref(A)) so that the following is true:

1. R is a row echelon form for A: This means that (i) nullR = nullA; and (ii) for each
k = bound(i), R(i, :) is the pivot row for the kth unknown, i.e., R(i, :) is the unique row in R for which
R(i, k) is the first (or, leftmost) nonzero entry.

2. R is really reduced or normalized, in the sense that R(:, bound) is the identity matrix, i.e.,
for each i, the pivot element R(i, bound(i)) equals 1 and is the only nonzero entry in its column, and
R has only these r = #bound rows.

A numerical example, continued: For the earlier numerical example, the rref and the rrref would
look like this:

rref(A) =




0 1 0 1 0 2 0 3
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0


 , rrref(A) =


 0 1 0 1 0 2 0 3

0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1


 .

Recall (or observe directly) that, for this example, bound = (2, 5, 7) and free = (1, 3, 4, 6, 8).

Finally, for most purposes, it is sufficient to have a b-form for A, i.e., a matrix R that satisfies the
following two conditions:
(3.8)(i) nullR = null A;
(3.8)(ii) R(:, b) = id for some sequence b.
Certainly, in these terms, the rrref(A) is a bound-form for A, but a matrix A may have many b-forms, and,
as we shall see, only the two conditions (3.8)(i-ii) really matter.

3.5 For each of the matrices A in HP(3.1), determine its rrref.

A complete description for null A obtained from a b-form

If R is a b-form for A, then it is easy to determine all solutions of the homogeneous linear system A? = 0,
i.e., all the elements of null A.

In recognition of the special case R = rrref(A), I’ll use f for a sequence complementary to b in the
sense that it contains all the indices in n but not in b.

In MATLAB, one would obtain f from n and b by the commands f = 1:n; f(b) = [];

We now obtain from any b-form R for A a 1-1 matrix C with the property that nullA = ranC, thus
getting a description both as a range and as a nullspace. Since such a C is 1-1 onto null A, this implies that
every x ∈ null A can be written in exactly one way in the form x = Ca. We will soon learn to call such a C
a ‘basis’ for the vector space nullA.

In the discussion, we use the following notation introduced earlier: If x is an n-vector and p is a list of
length r with range in n, then xp is the r-vector

xp = (xp(i) : i = 1:r).
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With this, by property (3.8)(i),

x ∈ null A ⇐⇒ 0 = Rx =
∑

j

R(:, j)xj = R(:, b)xb + R(:, f)xf .

Since R(:, b) = id by property (3.8)(ii), we conclude that

x ∈ null A ⇐⇒ xb = −R(:, f)xf.

We can write this even more succinctly in matrix form as follows:

null A = ranC,

with C the (n×#f)-matrix whose ‘f-rows’ form an identity matrix, and whose ‘b-rows’ are formed by the
‘f-columns’ of −R:

(3.9) C(f, :) = id, C(b, :) = −R(:, f).

E.g., for the earlier numerical example and with R = rrref(A),

C =




1 0 0 0 0
0 0 −1 −2 −3
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1




=




1 0 0 0 0
0 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

0 0 0 1 0
0 0 0 0 0

0 0 0 0 1




+




0 0 0 0 0

−0 −0 −1 −2 −3
0 0 0 0 0

0 0 0 0 0

−0 −0 −0 −0 −0
0 0 0 0 0

−0 −0 −0 −0 1
0 0 0 0 0




.

Note that C is 1-1, since x := Ca = 0 implies that 0 = xf = C(f, :)a = a. Therefore, C is (or, the columns
of C form) a ‘basis’ for nullA, in the sense that C is a 1-1 onto column map to null A.

Finally, when R = rrref(A), then the resulting C is ‘upper triangular’ in the sense that then

(3.10) i > free(j) =⇒ C(i, j) = 0.

3.6 Determine a ‘basis’ for the nullspace of A :=

[
1 1
2 2

]
and use it to describe the solution set of the system A? = (1, 2).

Draw a picture indicating both the solution set and null A.

3.7 For each of the matrices A in HP(3.1), give a ‘basis’ for null A.

The factorization A = A(:, bound)rrref(A)

Continuing with our b-form R for A, we claim that

A(:, b)R = A.

For the proof, we compare A(:, b)R =: M and A column by column. First, M(:, b) = A(:, b)R(:, b) = A(:, b),
by property (3.8)(ii). As to M(:, f) = A(:, b)R(:, f), we observe that, for any c (of length #f), the vector x
with

xb := R(:, f)c, xf := −c,

is in null R = null A, hence

0 = Ax = A(:, b)xb + A(:, f)xf = A(:, b)R(:, f)c + A(:, f)(−c).

In other words,
M(: f)c = A(:, b)R(:, f)c = A(:, f)c, ∀c ∈ IF#f,

showing that also M(:, f) = A(:, f). This proves our claim that A(:, b)R = A, hence, in particular,

(3.11) A = A(:, bound) rrref(A).

3.8 Prove: If M is such that MA = rrref(A) =: R, and bound is the increasing sequence of indices of bound columns of
A, then M is a left inverse for A(:, bound).
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38 3. Elimination, or: The determination of null A and ranA

A ‘basis’ for ranA

Here is a first consequence of the factorization A = A(:, b)R (with R satisfying (3.8)(i–ii)): The factor-
ization implies that ranA ⊂ ranA(:, b), while certainly ranA(:, b) ⊂ ranA. Hence

ranA = ranA(:, b).

Also, A(:, b) is 1-1: For, if A(:, b)a = 0, then the n-vector x with xb = a and with xf = 0 is in nullA = null R,
hence a = xb = −R(:, f)xf = −R(:, f)0 = 0. Consequently, A(:, b) is (or, the columns of A(:, b) form) a
‘basis’ for ranA.

3.9 For each of the matrices A in HP(3.1), give a ‘basis’ for ran A.

3.10 Let A be the n × n matrix [0, e1, . . . , en−1] (with ej denoting the jth unit vector, of the appropriate length). (a)
What is its rref? (b) In the equation A? = 0, which unknowns are bound, which are free? (c) Give a ‘basis’ for null A and a
‘basis’ for ran A.

3.11 Let M be the 6× 3-matrix [e3, e2, e1]. (a) What is its rref? (b) Use (a) to prove that M is 1-1. (c) Construct a left
inverse for M . (d) (off the wall:) Give a matrix P for which null P = ran M .

3.12 Let N := M t, with M the matrix in the previous problem. (a) What is its rref? (b) Use (a) to prove that N is onto.
(c) Construct a right inverse for N .

3.13 Use the rref to prove that ran U = ranV , with

U :=

[
1 2 3
2 4 6
−1 1 3

]
, V :=

[
1 2
2 4
−4 −5

]
.

(Hints: Proving two sets to be equal usually involves showing that each is a subset of the other. In this case, applying elimination

to [V, U ] as well as to [U, V ] should provide all the information you need.)

Uniqueness of the rrref(A)

If R is a b-form for A, then, as we just proved, A = A(:, b)R and A(:, b) is 1-1. Hence, if also S is a
b-form for A, then we have A(:, b)R = A = A(:, b)S and, since A(:, b) is 1-1, this implies that R = S. In
other words, the matrix R is uniquely determined by the condition that A(:, b)R = A. In particular, rrref(A)
is uniquely determined, since we already observed that, by (3.4), the sequence bound only depends on nullA.

Further, since rref(A) differs from rrref(A) only by those additional m −#bound zero rows, it follows
that each A also has a unique rref.

This finishes the proof of the following summarizing theorem.

(3.12) Theorem: For given A ∈ IFm×n, there is exactly one matrix R having the properties 1. and 2.
(listed in (3.7)) of a rrref for A. Further, with bound and free the indices of bound and free unknowns,
A(:, bound) is 1-1 onto ranA, and C ∈ IFn×#free, given by C(free, :) = id, C(bound, :) = −R(:, free),
is 1-1 onto null A, and C is ‘upper triangular’ in the sense that C(i, j) = 0 for i > free(j).

rrref(A) and the solving of A? = y

(3.5)Corollary(i) is exactly what we need when considering the linear system

(3.13) A? = y

for given A ∈ IFm×n and given y ∈ IFm. For, here we are hoping to write y as a linear combination of the
columns of A, and (3.5) tells us that this is possible exactly when the last unknown in the homogeneous
system

(3.14) [A, y]? = 0
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is free. Further, the factorization (3.11), applied to the augmented matrix [A, y], tells us how to write y
as a linear combination of the columns of A in case that can be done. For, with R = rrref([A, y]), it tells us
that

y = [A, y](: bound)R(:, n + 1),

and this gives us y in terms of the columns of A precisely when n + 1 6∈ bound, i.e., when the (n + 1)st
unknown is free.

(3.15) Proposition: For A ∈ IFm×n and y ∈ IFm, the equation

A? = y

has a solution if and only if the last column of [A, y] is free, in which case the last column of rrref([A, y])
provides the unique solution to

A(: bound)? = y.

More generally, if R = rrref([A, B]) for some arbitrary matrix B ∈ IFm×s and all the unknowns corre-
sponding to columns of B are free, then, by (3.11), applied to [A, B] rather than A, we have

B = A(:, bound)R(:, n + [1:s]).

A numerical example, continued: Recall our earlier example in which we used elimination to
convert a given matrix to its rrref, as follows:




0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7
0 1 0 1 3 2 −1 4


 →




0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1


 →


 0 1 0 1 0 2 0 3

0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1


 ,

hence bound = (2, 5, 7), free = (1, 3, 4, 6, 8). Now, the elimination algorithm is entirely unaware of how we
got the initial matrix. In particular, we are free to interpret in various ways the array on the left as being
of the form [A, B]. As soon as we specify the number of columns, in A or B, we know A and B exactly.

First, choose B to be a one-column matrix. Then, since the last unknown is free, we conclude that

(6, 3, 7, 4) = A(:, bound)R(:, 8) =




2 5 0
1 2 0
2 5 −1
1 3 −1


 (3, 0,−1).

If we choose B to be a three-column matrix instead, then the linear system A? = B is unsolvable since
now one of the columns of B (the second one) corresponds to a bound unknown. What about the other two
columns of this B? The first one corresponds to a free unknown, hence is a weighted sum of the columns to
the left of it, hence is in ranA. But the last one fails to be in ranA since its unknown is free only because
of the presence of the seventh column, and this seventh column is not in the span of the columns to the left
of it, hence neither is the eighth column. Indeed, the corresponding column of R has its last entry nonzero,
showing that A(:, bound(3)) is needed to write the last column of A as a weighted sum of columns to the left
of it.

25sep02 c©2002 Carl de Boor



40 3. Elimination, or: The determination of null A and ranA

3.14 Use elimination to show that

[
2 −1 0
1 2 1
0 2 −1

]
is 1-1 and onto.

3.15 Use elimination to settle the following assertions, concerning the linear system A? = y, with the (square) matrix A
and the right side y given by

[A, y] :=

[
1 −2 3 1
2 k 6 6
−1 3 k − 3 0

]
.

(a) If k = 0, then the system has an infinite number of solutions. (b) For another specific value of k, which you must find, the
system has no solutions. (c) For all other values of k, the system has a unique solution.

(To be sure, there probably is some preliminary work to do, after which it is straightforward to answer all three questions.)

3.16 Here are three questions that can be settled without doing any arithmetic. Please do so.

(i) Can both of the following equalities be right?

[−5 2
3 −1

] [
1 2
3 5

]
= id2 =

[
1 2
3 5

] [−4 2
3 5

]

(ii) How does one find the coordinates of e1 ∈ IR2 with respect to the vector sequence (1, 3), (2, 5) (i.e., numbers α, β for
which e1 = (1, 3)α + (2, 5)β), given that

AV :=

[−5 2
3 −1

] [
1 2
3 5

]
= id2 ?

(iii) How does one conclude at a glance that the following equation must be wrong?

[−5 2
3 −1
0 1

][
1 2 1
3 5 0

]
= id3 ?

The pigeonhole principle for square matrices

We are ready for a discussion of our basic problem, namely solving A? = y, in case A ∈ IFm×n, hence
y ∈ IFm. When is A 1-1, onto, invertible? We answer all these questions by applying elimination to the
augmented matrix [A, y].

If A is 1-1, then, by (3.5)Corollary, all its columns must be bound. In particular, there must be enough
rows to bind them, i.e., m ≥ n. Further, if m = n, then, by the time we reach the last column of [A, y],
there is no row left to bind it. Therefore, the last column must be free regardless of the choice of y, hence,
by (3.5)Corollary, y ∈ ranA for every y ∈ IFm = tarA, i.e., A is onto.

If A is onto, then, for i = 1:m, there is bi ∈ IFn so that Abi = ei ∈ IFm. Hence, with B := [b1, . . . , bm] ∈
IFn×m, we have AB = A[b1, . . . , bm] = [Ab1, . . . , Abm] = [e1, . . . , em] = idm. It follows that B is 1-1, hence
B has at least as many rows as columns, i.e., n ≥ m, and A is a left inverse for B. Further, if n = m, then,
by the previous paragraph, B is also onto, hence invertible, hence any left inverse must be its inverse. In
particular A = B−1 and therefore, in particular, A is 1-1.

Note that the argument just given provides the proof of the ‘Amazing Fact’ (2.18), since it concludes
from AB = id (with A, B square) that A must be the inverse of B, and this implies, in particular, that also
BA = id.

But we have proved much more, namely the following basic Theorem.

(3.16) Theorem (pigeonhole principle for square matrices): A square matrix is 1-1 if and only
if it is onto.

In other words, when dealing with a square matrix, 1-1 or onto is already enough to have 1-1 and onto,
i.e., to have invertibility.
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We also now know that only square matrices are invertible.

(3.17) Proposition: An invertible matrix is necessarily square. More precisely, if A ∈ IFm×n, then
(i) A 1-1 implies that m ≥ n; and (ii) A onto implies that m ≤ n.

If A ∈ IFn×n is invertible, then the first n columns of [A, idn] are necessarily bound and the remaining n
columns are necessarily free. Therefore, if R := rrref([A, idn]), then R = [ idn, ?] and, with (3.11), necessarily
[A, idn] = AR = [A idn, A?], hence ? = A−1, i.e., R = [ idn, A−1].

practical note: Although MATLAB provides the function inv(A) to generate the inverse of A,
there is usually no reason to compute the inverse of a matrix, nor would you solve the linear system
A? = y in practice by computing rref([A, y]) or by computing inv(A)*y. Rather, in MATLAB you
would compute the solution of A? =y as A\y. For this, MATLAB also uses elimination, but in a more
sophisticated form, to keep rounding error effects as small as possible. In effect, the choice of pivot
rows is more elaborate than we discussed above.

(3.18) Example: Triangular matrices There is essentially only one class of square matrices whose
invertibility can be settled by inspection, namely the class of triangular matrices.

Assume that the square matrix A is upper triangular, meaning that i > j =⇒ A(i, j) = 0. If all its
diagonal elements are nonzero, then each of its unknowns has a pivot row, hence is bound and, consequently,
A is 1-1, hence, by (3.16)Theorem, it is invertible. Conversely, if some of its diagonal elements are zero, then
there must be a first zero diagonal entry, say A(i, i) = 0 6= A(k, k) for k < i. Then, for k < i, row k is a
pivot row for xk, hence, when it comes time to decide whether xi is free or bound, all rows not yet used as
pivot rows do not involve xi explicitly, and so xi is free. Consequently, nullA is nontrivial and A fails to be
1-1.

Exactly the same argument can be made in case A is lower triangular, meaning that i < j =⇒
A(i, j) = 0, provided you are now willing to carry out the elimination process from right to left, i.e., in the
order xn, xn−1, etc., and, correspondingly, recognize a row as pivot row for xk in case xk is the last unknown
that appears explicitly (i.e., with a nonzero coefficient) in that row.

(3.19) Proposition: A square triangular matrix is invertible if and only if all its diagonal entries are
nonzero.
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(3.20) Example: Interpolation If V ∈ L(IFn, X) and Q ∈ L(X, IFn), then QV is a linear map from
IFn to IFn, i.e., a square matrix, of order n. If QV is 1-1 or onto, then (3.16)Theorem tells us that QV is
invertible. In particular, V is 1-1 and Q is onto, and so, for every y ∈ IFn, there exists exactly one p ∈ ranV
for which Qp = y. This is the essence of interpolation.

For example, take X = IRIR, V = [()0, ()1, . . . , ()k−1], hence ranV equals Π<k, the collection of all
polynomials of degree < k. Further, take Q : X → IRk : f 7→ (f(τ1), . . . , f(τk)) for some fixed sequence
τ1 < · · · < τk of points. Then the equation

QV ? = Qf

asks for the (power) coefficients of a polynomial of degree < k that agrees with the function f at the k
distinct points τj .

We investigate whether QV is 1-1 or onto, hence invertible. For this, consider the matrix QW , with the
columns of W := [w1, . . . , wk] the so-called Newton polynomials

wj : t 7→
∏
h<j

(t− τh).

Observe that (QW )(i, j) = (Qwj)(τi) =
∏

h<j(τi − τh) = 0 if and only if i < j. Therefore, QW is square
and lower triangular with nonzero diagonal entries, hence invertible by (3.19)Proposition, while wj is a
polynomial of exact degree j − 1 < k, hence wj = V cj for some k-vector cj . It follows that the invertible
matrix QW equals

QW = [Qw1, . . . , Qwk] = [QV c1, . . . , QV ck] = (QV )[c1, . . . , ck].

In particular, QV is onto, hence invertible, hence also V is 1-1, therefore invertible as a linear map from IRk

to its range, Π<k. We have proved:

(3.21) Proposition: For every f : IR→ IR and every k distinct points τ1, . . . , τk in IR, there is exactly
one choice of coefficient vector a for which the polynomial [()0, . . . , ()k−1]a of degree < k agrees with
f at these τj .

In particular, (i) the column map [()0, . . . , ()k−1] : IRk → Π<k is invertible, and (ii) any polynomial of
degree < k with more than k − 1 distinct zeros must be 0.

3.17 For each of the following matrices A, use elimination (to the extent necessary) to (a) determine whether it is invertible
and, if it is, to (b) construct the inverse (see the remark following (3.17)Proposition).

(a)

[
1 2 3
2 3 4

]
; (b)

[
1 2
2 3
3 4

]
; (c)

[
1 2 3
2 3 4
3 4 5

]
; (d)

[
1 2 3
2 3 4
3 4 4

]
; (e)

[
1 1 1
1 2 4
1 3 8

]
; (f) [e1 − e3, e2, e3 + e4, e4] ∈ IR4×4.

3.18 (a) Construct the unique element of ran[()0, ()2, ()4] that agrees with ()1 at the three points 0, 1, 2.

(b) Could (a) have been carried out if the pointset had been -1, 0, 1 (instead of 0, 1, 2)?

3.19 T/F

(a)

[
1 0 1
0 2 0
0 0 0

]
is in row echelon form.

(b) If all unknowns in the linear system A? = 0 are free, then A = 0;

(c) If all unknowns in the linear system A? = 0 are bound, then A is invertible.

(d) If some unknowns in the linear system A? = 0 are free, then A cannot be invertible.

(e) The inverse of an upper triangular matrix is lower triangular.

(f) A linear system of n equations in n + 1 unknowns always has solutions.

(g) Any square matrix in row echelon form is upper triangular.

(h) If A and B are square matrices of the same order, then AB? = 0 has the same number of bound unknowns as does
BA? = 0.

(i) If A and B are square matrices of the same order, and AB is invertible, then also BA is invertible.

(j) If nullA = null B, then A? = 0 and B? = 0 have the same free and bound unknowns.
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