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We also now know that only square matrices are invertible.

(3.17) Proposition: An invertible matrix is necessarily square. More precisely, if A ∈ IFm×n, then
(i) A 1-1 implies that m ≥ n; and (ii) A onto implies that m ≤ n.

If A ∈ IFn×n is invertible, then the first n columns of [A, idn] are necessarily bound and the remaining n
columns are necessarily free. Therefore, if R := rrref([A, idn]), then R = [ idn, ?] and, with (3.11), necessarily
[A, idn] = AR = [A idn, A?], hence ? = A−1, i.e., R = [ idn, A−1].

practical note: Although MATLAB provides the function inv(A) to generate the inverse of A,
there is usually no reason to compute the inverse of a matrix, nor would you solve the linear system
A? = y in practice by computing rref([A, y]) or by computing inv(A)*y. Rather, in MATLAB you
would compute the solution of A? =y as A\y. For this, MATLAB also uses elimination, but in a more
sophisticated form, to keep rounding error effects as small as possible. In effect, the choice of pivot
rows is more elaborate than we discussed above.

(3.18) Example: Triangular matrices There is essentially only one class of square matrices whose
invertibility can be settled by inspection, namely the class of triangular matrices.

Assume that the square matrix A is upper triangular, meaning that i > j =⇒ A(i, j) = 0. If all its
diagonal elements are nonzero, then each of its unknowns has a pivot row, hence is bound and, consequently,
A is 1-1, hence, by (3.16)Theorem, it is invertible. Conversely, if some of its diagonal elements are zero, then
there must be a first zero diagonal entry, say A(i, i) = 0 6= A(k, k) for k < i. Then, for k < i, row k is a
pivot row for xk, hence, when it comes time to decide whether xi is free or bound, all rows not yet used as
pivot rows do not involve xi explicitly, and so xi is free. Consequently, nullA is nontrivial and A fails to be
1-1.

Exactly the same argument can be made in case A is lower triangular, meaning that i < j =⇒
A(i, j) = 0, provided you are now willing to carry out the elimination process from right to left, i.e., in the
order xn, xn−1, etc., and, correspondingly, recognize a row as pivot row for xk in case xk is the last unknown
that appears explicitly (i.e., with a nonzero coefficient) in that row.

(3.19) Proposition: A square triangular matrix is invertible if and only if all its diagonal entries are
nonzero.
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42 3. Elimination, or: The determination of null A and ranA

(3.20) Example: Interpolation If V ∈ L(IFn, X) and Q ∈ L(X, IFn), then QV is a linear map from
IFn to IFn, i.e., a square matrix, of order n. If QV is 1-1 or onto, then (3.16)Theorem tells us that QV is
invertible. In particular, V is 1-1 and Q is onto, and so, for every y ∈ IFn, there exists exactly one p ∈ ranV
for which Qp = y. This is the essence of interpolation.

For example, take X = IRIR, V = [()0, ()1, . . . , ()k−1], hence ranV equals Π<k, the collection of all
polynomials of degree < k. Further, take Q : X → IRk : f 7→ (f(τ1), . . . , f(τk)) for some fixed sequence
τ1 < · · · < τk of points. Then the equation

QV ? = Qf

asks for the (power) coefficients of a polynomial of degree < k that agrees with the function f at the k
distinct points τj .

We investigate whether QV is 1-1 or onto, hence invertible. For this, consider the matrix QW , with the
columns of W := [w1, . . . , wk] the so-called Newton polynomials

wj : t 7→
∏
h<j

(t− τh).

Observe that (QW )(i, j) = (Qwj)(τi) =
∏

h<j(τi − τh) = 0 if and only if i < j. Therefore, QW is square
and lower triangular with nonzero diagonal entries, hence invertible by (3.19)Proposition, while wj is a
polynomial of exact degree j − 1 < k, hence wj = V cj for some k-vector cj . It follows that the invertible
matrix QW equals

QW = [Qw1, . . . , Qwk] = [QV c1, . . . , QV ck] = (QV )[c1, . . . , ck].

In particular, QV is onto, hence invertible, hence also V is 1-1, therefore invertible as a linear map from IRk

to its range, Π<k. We have proved:

(3.21) Proposition: For every f : IR→ IR and every k distinct points τ1, . . . , τk in IR, there is exactly
one choice of coefficient vector a for which the polynomial [()0, . . . , ()k−1]a of degree < k agrees with
f at these τj .

In particular, (i) the column map [()0, . . . , ()k−1] : IRk → Π<k is invertible, and (ii) any polynomial of
degree < k with more than k − 1 distinct zeros must be 0.

3.17 For each of the following matrices A, use elimination (to the extent necessary) to (a) determine whether it is invertible
and, if it is, to (b) construct the inverse (see the remark following (3.17)Proposition).

(a)

[
1 2 3
2 3 4

]
; (b)

[
1 2
2 3
3 4

]
; (c)

[
1 2 3
2 3 4
3 4 5

]
; (d)

[
1 2 3
2 3 4
3 4 4

]
; (e)

[
1 1 1
1 2 4
1 3 8

]
; (f) [e1 − e3, e2, e3 + e4, e4] ∈ IR4×4.

3.18 (a) Construct the unique element of ran[()0, ()2, ()4] that agrees with ()1 at the three points 0, 1, 2.

(b) Could (a) have been carried out if the pointset had been -1, 0, 1 (instead of 0, 1, 2)?

3.19 T/F

(a)

[
1 0 1
0 2 0
0 0 0

]
is in row echelon form.

(b) If all unknowns in the linear system A? = 0 are free, then A = 0;

(c) If all unknowns in the linear system A? = 0 are bound, then A is invertible.

(d) If some unknowns in the linear system A? = 0 are free, then A cannot be invertible.

(e) The inverse of an upper triangular matrix is lower triangular.

(f) A linear system of n equations in n + 1 unknowns always has solutions.

(g) Any square matrix in row echelon form is upper triangular.

(h) If A and B are square matrices of the same order, then AB? = 0 has the same number of bound unknowns as does
BA? = 0.

(i) If A and B are square matrices of the same order, and AB is invertible, then also BA is invertible.

(j) If nullA = null B, then A? = 0 and B? = 0 have the same free and bound unknowns.
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Bases 43

4. The dimension of a vector space

Bases

The only vector spaces in which we can carry out calculations are the coordinate spaces IFn. To calculate
with other vector spaces, we have to relate them first to some coordinate space. This is true even when X
is a proper subspace of IFn, e.g., the nullspace of some matrix.

For example, we do not really compute with polynomials, we usually compute with the coefficients of
the polynomial. Precisely (see (3.21)Proposition), one sets up the invertible linear map

IFn → Π<n : a 7→ a1 + a2t + a3t
2 + · · ·+ antn−1

where I have, temporarily, followed the (ancient and sometimes confusing) custom of describing the mono-
mials by the list of symbols ( , t, t2, t3, . . .) rather than by the nonstandard symbols ()j , j = 0, 1, 2, 3, . . .
introduced earlier. One adds polynomials by adding their coefficients, or evaluates polynomials from their
coefficients, etc. You may be so used to that, that you haven’t even noticed until now that you do not work
with the polynomials themselves, but only with their coefficients.

It is therefore a practically important goal to provide ways of representing the elements of a given
vector space X by n-vectors. We do this by using linear maps from some IFn that have X as their range,
i.e., we look for sequences v1, v2, . . . , vn in X for which the linear map [v1, v2, . . . , vn] : IFn → X is onto. If
there is such a map for some n, then we call X finitely generated.

Among such onto maps V ∈ L(IFn, X), those that are also 1-1, hence invertible, are surely the most
desirable ones since, for such V , there is, for any x ∈ X , exactly one a ∈ IFn with x = V a. Any invertible
column map to X is, by definition, a basis for X .

Since idn ∈ L(IFn) is trivially invertible, it is a basis for IFn. It is called the natural basis for IFn.
The bound part, A(:, bound), of A ∈ IFm×n is a basis for ranA. You also know (from pages 36ff) how

to construct a basis for the nullspace of any A ∈ IFm×n from its rrref(A).
Here is a small difficulty with this (and any other) definition of dimension: What is the dimension of

the trivial space, i.e., the vector space that consists of the zero vector alone? It is a perfectly well-behaved
vector space (though a bit limited, – except as a challenge to textbook authors when it comes to discussing
its basis).

We deal with it here by considering V ∈ L(IFn, X) even when n = 0. Since IFn consists of lists of n
items (each item an element from IF), the peculiar space IF0 must consist of lists of no items, i.e., of empty
lists. There is only one empty list (of scalars), hence IF0 has just one element, the empty list, ( ), and this
element is necessarily the neutral element (or, zero vector) for this space. Correspondingly, there is exactly
one linear map from IF0 into X , namely the map IF0 → X : () = 0 7→ 0. Since this is a linear map from IF0,
we call it the column map into X with no columns, and denote it by [ ]. Thus,

(4.1) [ ] : IF0 → X : () = 0 7→ 0.

Note that [ ] is 1-1. Note also that the range of [ ] consists of the trivial subspace, {0}. In particular, the
column map [ ] is onto {0}, hence is invertible, as map from IF0 to {0}. It follows that [ ] is a basis for {0}.
Isn’t Mathematics wonderful! - As it turns out, the column map [ ] will also be very helpful below.

Here are some standard terms related to bases of a vector space:
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44 4. The dimension of a vector space

Definition: The range of V := [v1, v2, . . . , vn] is called the span of the sequence v1, v2, . . . , vn:

span(v1, v2, . . . , vn) := ranV.

x ∈ X is said to be linearly dependent on v1, v2, . . . , vn in case x ∈ ranV , i.e., in case x is a linear
combination of the vj . Otherwise x is said to be linearly independent of v1, v2, . . . , vn.

v1, v2, . . . , vn is said to be linearly independent in case V is 1-1, i.e., in case V a = 0 implies
a = 0 (i.e., the only way to write the zero vector as a linear combination of the vj is to choose all the
weights equal to 0).

v1, v2, . . . , vn is said to be spanning for X in case V is onto, i.e., in case span(v1, v2, . . . , vn) = X .
v1, v2, . . . , vn is said to be a basis for X in case V is invertible, i.e., 1-1 and onto.
If V is invertible, then V −1x is an n-vector, called the coordinate vector for x with respect

to the basis v1, v2, . . . , vn.

You may wonder why there are all these terms in use for the sequence v1, v2, . . . , vn, particularly when
the corresponding terms for the map V are so much shorter and to the point. I don’t know the answer.
However, bear in mind that the terms commonly used are those for sequences.

A major use of the basis concept is the following which generalizes the way we earlier constructed
arbitrary linear maps from IFn.

(4.2) Proposition: Let V = [v1, v2, . . . , vn] be a basis for the vector space X , and let Y be an
arbitrary vector space. Any map f : {v1, . . . , vn} → Y has exactly one extension to a linear map A
from X to Y . In other words, we can choose the values of a linear map on the columns of a basis
arbitrarily and, once chosen, this pins down the linear map everywhere.

Proof: The map A := [f(v1), . . . , f(vn)]V −1 is linear, from X to Y , and carries vj to f(vj) since
V −1vj = ej , all j. This shows existence. Further, if also B ∈ L(X, Y ) with Bvj = f(vj), all j, then
BV = [f(v1), . . . , f(vn)] = AV , therefore B = A (since V is invertible).

4.1 Describe what the n × n-matrix A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 0


 does to all the vectors ej , i.e., give a simple formula

for Aej . Deduce from your formula that ran An = {0}, hence that An = 0.

4.2 Prove: A ∈ L(X) commutes with every B ∈ L(X) if and only if A = α idX , i.e., a scalar multiple of the identity.

4.3 Let X × Y be the product space of the vector spaces X and Y . The map f : X × Y → IF is bilinear if it is linear in
each slot, i.e., if f(·, y) ∈ L(X, IF) for all y ∈ Y , and f(x, ·) ∈ L(Y, IF) for every x ∈ X.

(i) Prove that, for every A ∈ IFm×n, the map fA : IFm × IFn : (x, y) 7→ ytAx is bilinear.

(ii) Prove that, for every bilinear f : IFm × IFn → IF, there exists exactly one A ∈ IFm×n with fA = f .

(iii) Prove that the map A 7→ fA is an invertible linear map on IFm×n to the vector space BL(IFm, IFn) of all bilinear maps
on IFm × IFn under pointwise vector operations.

4.4 MATLAB’s command yy = interp1(x,y,xx,’spline’) returns the value(s) at xx of a certain function f that matches
the data given by x, y, in the sense that f(x(i)) = y(i) for i=1:n, with n the length of both x and y (and assuming that the
entries of x are pairwise distinct). (If you wanted to look at f on the interval [a. .b], you might choose xx = linspace(a,b,N+1);
with N some suitably large number, and then plot(xx,yy).)

(a) Generate some numerical evidence for the claim that (up to roundoff) the map y7→ f provided by this command is linear.

(b) Assuming that the map is linear, deduce from the above description of the map that it must be 1-1, hence a basis for its
range.
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(c) Still assuming that the map y 7→ f provided by that command is indeed linear, hence a column map, provide a plot of
each of its columns, as functions on the interval [0 . . 3], for the specific choice 0:3 for x.

(d) (quite open-ended) Determine as much as you can about the elements of the range of this column map.

(e) Is the map still linear if you replace ’spline’ by ’cubic’?

Construction of a basis

Next, we consider the construction of a basis. This can be done either by extending a 1-1 column map
V to a basis, or by thinning an onto column map W to a basis. For this, remember that, for two column
maps V and W into some vector space X , we agreed to mean by V ⊂ W that V can be obtained from W
by thinning, i.e., by omitting zero or more columns from W , and W can be obtained from V by extending,
i.e., by inserting zero or more columns.

In the discussion to follow, it is convenient to classify the columns of a column map as bound or free,
using (3.5)Corollary as a guide. Specifically, we call a column free if it is a weighted sum of the columns to
its left; otherwise, we call it bound.

For example, if V ⊂W , then any free column of V is also free as a column of W , while a bound column
of V may possibly be free as a column of W unless W = [V, U ].

(4.3) Lemma: The kth column of the column map V is free if and only if nullV contains a vector
whose last nonzero entry is its kth.

Proof: The kth column of V = [v1, . . . , vn] ∈ L(IFn, X) is free iff vk ∈ ran[v1, . . . , vk−1]. In partic-
ular, the first column is free iff it is 0 (recall that ran [ ] = {0}).

If the kth column is free, then vk = [v1, . . . , vk−1]a for some a ∈ IFk−1, hence (a,−1, 0, . . . , 0) ∈ IFn is a
vector in null V whose last nonzero entry is its kth. Conversely if x ∈ null V with xk 6= 0 = xk+1 = · · · = xn,
then [v1, . . . , vk−1]x1:k−1 + vkxk = 0, therefore, as xk 6= 0, vk = [v1, . . . , vk−1](x1:k−1/(−xk)) showing that
the kth column is free.

(4.4) Corollary: A column map is 1-1 if and only if all of its columns are bound.

We are ready for the following algorithm which extracts from any column map W a basis for its range.

(4.5) Basis Selection Algorithm:
input: the column map W
V ← [ ];
for w ∈ W do:

if w 6∈ ranV , then V ← [V, w]; endif
enddo
output: the column map V

Proposition: The output of the Basis Selection Algorithm is a basis for the range of its input.

Proof: The resulting V has the same range as W (since the only columns of W not explicitly
columns of V are those that are already in the range of V ). In addition, by construction, every column of V
is bound, hence V is 1-1 by (4.4)Corollary, therefore a basis for its range.
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46 4. The dimension of a vector space

(4.6) Proposition: Any onto column map can be thinned to a basis.

Now note that the Basis Selection Algorithm will put any bound column of W into the resulting basis,
V . In particular, if W = [U, Z] with U 1-1, then, as already remarked just prior to (4.3)Lemma, all columns
of U will be bound also as columns of W , hence will end up in the resulting basis. This proves

(4.7) Proposition: Any 1-1 column map into a finitely generated vector space can be extended to a
basis for that space.

If V is a 1-1 column map into X then, by (4.4)Corollary, all its columns are bound. Hence if V is
maximally 1-1 into X , meaning that [V, w] fails to be 1-1 for every w ∈ X , then that additional column
must be free, i.e., w ∈ ranV for all w ∈ X , showing that then V is also onto, hence a basis. This proves

(4.8) Corollary: Any maximally 1-1 column map into a vector space is a basis for that space.

If W is a column map onto X , then, by (4.6), it can always be thinned to a basis. Hence, if W is
minimally onto, meaning that no V ⊂W (other than W ) is onto, then W itself must be that basis.

(4.9) Corollary: Any minimally onto column map into a vector space is a basis for that space.

4.5 How would you carry out the (4.5) Basis Selection Algorithm for the special case that W is a matrix? (Hint: (3.2)).

4.6 Try out your answer to the previous problem on the specific matrix W =

[
0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7

]
.

Dimension

(4.10) Lemma: Any two bases for a vector space have the same number of columns.
This number of columns in any basis for X is denoted

dimX

and is called the dimension of X .

Proof: Let V = [v1, . . . , vn] and W be bases for the vector space X . Since W is onto, we have
vn = Wa for some a, hence (−1, a) is a nonzero vector in null[vn, W ] and so, [vn, W ] is onto but not 1-1,
hence, by (4.4)Corollary, has some free columns. Yet, since vn 6= 0, all these free columns must be in W
and, dropping any one of them, say the first one, we get the onto column map [vn, W1].
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It follows that vn−1 = [vn, W1]a for some vector a, hence the nonzero vector (−1, a) is in null[vn−1, vn, W1],
and so, [vn−1, vn, W1] is onto but not 1-1, therefore, by (4.4)Corollary, it must have some free columns. Yet,
since the first two columns are part of a 1-1 map, all these free columns must be in W1 and, dropping any
one of them, say the first one, we get the onto column map [vn−1, vn, W2].

You get the pattern: as we introduce in this way the columns of V one by one, there must always be at
least one column from W still to drop. In other words, we must have #V ≤ #W . However, since also W is
1-1 and V is onto, we also must have #W ≤ #V , and that finishes the proof.

Of course, if you are willing to make use of a result from the previous chapter, then the proof of this
lemma is immediate: Let V ∈ L(IFn, X) and W ∈ L(IFm, X) be bases for X . Then, W−1V is an invertible
linear map from IFn to IFm, hence an invertible matrix and therefore, by (3.17)Proposition(i), necessarily a
square matrix, i.e., n = m.

Notice that we have actually proved the stronger statement

(4.11) Lemma: If V and W are column maps into X , and V is 1-1 and W is onto, then #V ≤ #W .

Again, also this stronger result is an immediate consequence of something proved in the previous chapter:
Since W is onto, each column vj of V can be written as vj = Wcj for some vector cj. Hence V = WC for
some matrix C and, since V is 1-1, so must C be. By (3.17)Proposition(i) or its antecedent, (3.6)Theorem,
this implies that C cannot have more columns than rows, i.e., #V = #C ≤ dim tarC = dim domW = #W .

Since idn is a basis for IFn and has n columns, we conclude that the n-dimensional coordinate space
has, indeed, dimension n. In effect, IFn is the prototypical vector space of dimension n. Any n-dimensional
vector space X is connected to IFn by invertible linear maps, the bases for X .

Note that the trivial vector space, {0}, has dimension 0 since its (unique) basis has no columns.

(4.12) Example: The dimension of Πk(IRd). The space Πk(IRd) of d-variate polynomials of
degree ≤ k is, by definition, the range of the column map V := [()α : |α| ≤ k], with

()α : IRd → IR : t 7→ tα := tα1
1 · · · tαd

d

a nonstandard notation for the α-power function, with α ∈ ZZd
+, i.e., α any d-vector with nonnegative integer

entries, and with |α| := ∑
j αj . For d = 1, it is the space of univariate polynomials of degree ≤ k, and we

showed its dimension to be k + 1 by showing that, in that case, V is 1-1.
When d = 1, then V can be seen to be 1-1 also by considering the ‘data map’

Q : Πk → IRk+1 : p 7→ (p(0), Dp(0), D2p(0)/2, . . . , Dkp(0)/k!),

for which we have QV = id, hence V is 1-1.
An analogous argument, involving the ‘data map’

p 7→ (Dαp(0)/α! : α ∈ ZZd
+, |α| ≤ k),

with α! := α1! · · ·αd!, shows that

dimΠk(IRd) = #{α ∈ ZZd
+ : |α| ≤ k},

and the latter number can be shown to equal
(
k+d

d

)
.
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48 4. The dimension of a vector space

4.7 Prove that the space Π2(IR2) of bivariate polynomials of total degree ≤ 2 has dimension 6.

4.8 Prove that a vector space of dimension n has subspaces of dimension j for each j = 0:n.

Some uses of the dimension concept

Here is a major use of the dimension concept as it relates to vector spaces.

(4.13) Proposition: If X , Y are vector spaces with X ⊂ Y and dimY < ∞, then dim X ≤ dimY ,
with equality iff X = Y .

Proof: Since there is some 1-1 column map into X (e.g., the unique linear map from IF0 into
X), while dimY is an upper bound on the number of columns in any 1-1 column map into X ⊂ Y (by
(4.7)Proposition), there exists a maximally 1-1 column map V into X . By (4.8)Corollary, any such V is
necessarily a basis for X , hence X is finitely generated. By (4.7)Proposition, we can extend V to a basis
[V, W ] for Y . Hence, dimX ≤ dim Y with equality iff W = [ ], i.e., iff X = Y .

Note the following important (nontrivial) part of (4.13)Proposition:

(4.14) Corollary: Any linear subspace of a finite-dimensional vector space is finite-dimensional.

The dimension concept is usually applied to linear maps by way of the following formula.

(4.15) Dimension Formula: For any linear map A with finite-dimensional domain,

dim domA = dim ranA + dimnullA.

Proof: Since dom A is finite-dimensional, so is nullA (by (4.14)Corollary), hence nullA has a basis,
V ∈ L(IFn, null A) say. By (4.7)Proposition, we can extend this to a basis [V, U ] for domA. Let r := #U .
Then, [V, U ] is invertible and dimdomA− dimnull A = (n + r) − n = r.

It remains to prove that dim ranA = r. For this, we prove that AU : IFr → ranA is invertible.
Since A[V, U ] = [AV, AU ] maps onto ranA and AV = 0, already AU must map onto ranA, i.e., AU is

onto.
Moreover, AU is 1-1: For, if AUa = 0, then Ua ∈ null A, hence, since V maps onto null A, there is some

b so that Ua = V b. This implies that [V, U ](b,−a) = 0 and, since [V, U ] is 1-1, this shows that, in particular,
a = 0.

is defined,

(4.16) Corollary: Let A ∈ L(X, Y ).
(i) If dimX < dimY , then A cannot be onto.
(ii) If dimX > dimY , then A cannot be 1-1.
(iii) If dimX = dimY <∞, then A is onto if and only if A is 1-1. (This implies (2.18)!)

Proof: (i) dim ranA ≤ dimdomA = dimX < dimY = dim tarA, hence ranA 6= tar A.
(ii) dimnullA = dimdomA−dim ranA = dimX−dim ranA ≥ dimX−dimY > 0, hence nullA 6= {0}.
(iii) If dim X = dimY , then dim tar A = dimdomA = dim ranA + dimnull A, hence A is onto (i.e.,

tarA = ranA) if and only if dimnullA = 0, i.e., A is 1-1.
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(4.17) Lemma: Let X , Y be vector spaces, and assume that X is finite-dimensional. Then dim X =
dim Y if and only if there exists an invertible A ∈ L(X, Y ).

Proof: Let n := dim X . Since n <∞, there exists an invertible V ∈ L(IFn, X) (, a basis for X). If
now A ∈ L(X, Y ) is invertible, then AV is an invertible linear map from IFn to Y , hence dim Y = n = dim X .
Conversely, if dim Y = dimX , then there exists an invertible W ∈ L(IFn, Y ); but then WV −1 is an invertible
linear map from X to Y .

For the next general result concerning the dimension concept, recall that both the sum

Y + Z := {y + z : y ∈ Y, z ∈ Z}
and the intersection Y ∩ Z of two linear subspaces is again a linear subspace.

(4.18) Proposition: If Y and Z are linear subspaces of the finite-dimensional vector space X , then

(4.19) dim(Y + Z) = dimY + dim Z − dim(Y ∩ Z).

Proof 1: Y ∩ Z is a linear subspace of X , hence is finite-dimensional (by (4.14)Corollary), hence
Y ∩ Z has a basis, V say. Extend it, as we may (by (4.7)Proposition), to a basis [U, V ] of Y and to a basis
[V, W ] of Z, and consider the column map [U, V, W ].

We claim that [U, V, W ] is 1-1. Indeed, if [U, V, W ](a, b, c) = 0, then [U, V ](a, b) = −Wc, with the left
side in Y and the right side in Z, hence both are in Y ∩Z = ranV . Therefore, −Wc = V d for some d, hence
[V, W ](d, c) = 0, and as [V, W ] is 1-1, it follows, in particular, that c = 0. This leaves [U, V ](a, b) = 0 and,
since [U, V ] is 1-1 by construction, now also (a, b) = 0.

We conclude that [U, V, W ] is a basis for its range, and that range is ran[U, V, W ] = ran[U, V, V, W ] =
ran[U, V ] + ran[V, W ] = Y + Z. Therefore, dim(Y + Z) = #U + #V + #W = #[U, V ] + #[V, W ] −#V =
dimY + dim Z − dim(Y ∩ Z).

Proof 2: The following alternative proof shows (4.19) to be a special case of the (4.15)Dimension
Formula, and provides a way to construct a basis for Y ∩ Z from bases for Y and Z.

Consider the column map A := [U, W ] with U a basis for Y and W a basis for Z. Since dimdomA =
#U + #W = dimY + dimZ and ranA = Y + Z, the formula (4.19) follows from the (4.15)Dimension
Formula, once we show that dimnullA = dimY ∩ Z. For this, let x ∈ Y ∩ Z. Then x = Ua = Wb for
some a and b, therefore A(a,−b) = [U, W ](a,−b) = Ua −Wb = x − x = 0, hence (a,−b) ∈ nullA. Hence,
(a,−b) = Cc for some c and with C =: [CU ; CW ] a basis for nullA. In particular, a = CU c, showing that
the column map UCU has all of Y ∩ Z in its range. On the other hand, 0 = AC = UCU + WCW , hence
UCU = −WCW and, in particular, UCU maps into Y ∩ Z, hence onto Y ∩ Z. Finally, UCU is 1-1: for,
if UCUa = 0, then CUa = 0 since U is 1-1, but then also WCW a = −UCUa = 0, hence also CW a = 0,
therefore Ca = 0 and so a = 0 since C is 1-1 by assumption. Altogether, this shows that UCU is a basis for
Y ∩ Z, hence dimY ∩ Z = #UCU = #C = dimnull A.

Here are three of several corollaries of this basic proposition to be used in the sequel.

(4.20) Corollary: If [V, W ] is 1-1, then ranV ∩ ranW is trivial.
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(4.21) Corollary: If dim Y + dim Z > dimX for some linear subspaces Y and Z of the finite-
dimensional vector space X , then Y ∩ Z is a nontrivial linear subspace, i.e., Y ∩ Z contains nonzero
elements.

(4.22) Corollary: If Y and Z are linear subspaces of the finite-dimensional vector space X , and
Y ∩ Z = {0}, then

dimY + dim Z ≤ dimX,

with equality if and only if X = Y + Z.

4.9 For each of the following linear maps, determine its range and its nullspace. Make as much use of the Dimension
Formula as possible. (You may assume, if need be, that Vk := [()0, ()1, . . . , ()k ] is a basis for Πk since it is proved in the Notes).

(a) D : Πk → Πk−1 : p 7→ Dp, with Dp the first derivative of p. (b) I : Πk−1 → Πk : p 7→
∫ ·
0

p(s)ds, i.e., Ip is the primitive or

antiderivative of p that vanishes at 0, i.e., (Ip)(t) =
∫ t

0
p(s)ds. (c) A : Πk → Πk : p 7→ Dp + p.

4.10 Prove that V := [()0, ()1, ()2 − 1, 4()3 − 3()1, 8()4 − 8()2 + 1] is a basis for Π4.

4.11 Call (Y0, . . . , Yr) a proper chain in the vector space X if each Yj is a subspace and Y0 ⊆′ Y2 ⊆′ · · · ⊆′ Yr. Prove

that, for any such proper chain, r ≤ dimX, with equality if and only if dimYj = j, j = 0: dimX.

4.12 Let d be any scalar-valued map, defined on the collection of all linear subspaces of a finite-dimensional vector space X,
that satisfies the following two conditions: (i) Y ∩Z = {0} =⇒ d(Y + Z) = d(Y )+ d(Z); (ii) dimY = 1 =⇒ d(Y ) = 1.

Prove that d(Y ) = dimY for every linear subspace of X.

4.13 Prove: for any A ∈ L(X, Y ) and any linear subspace Z of X, dimA(Z) = dim Z − dim(Z ∩ (null A)).

4.14 The defect of a linear map is the dimension of its nullspace: defect(A) := dimnull A. (a) Prove that defect(B) ≤
defect(AB) ≤ defect(A) + defect(B). (b) Prove: If dimdom B = dimdom A, then also defect(A) ≤ defect(AB). (c) Give an
example of linear maps A and B for which AB is defined and for which defect(A) > defect(AB).

4.15 Let A ∈ L(X, Y ), B ∈ L(X, Z), with Y finite-dimensional. There exists C ∈ L(Y, Z) with A = CB if and only if
null B ⊂ null A.

4.16 Prove: Assuming that the product ABC of three linear maps is defined, dim ran(AB)+dim ran(BC) ≤ dim ran B +
dim ran(ABC).

4.17 Factor space: Let Y be a linear subspace of the vector space X and consider the collection

X/Y := {x + Y : x ∈ X}

of subsets of X, with

x + Y := {x} + Y = {x + y : y ∈ Y }.

(i) Prove that the map

f : X → X/Y : x 7→ x + Y

is linear with respect to the addition

M + N := {m + n : m ∈ M, n ∈ N}

and the multiplication by a scalar

αM :=

{ {αm : m ∈ M}, if α 6= 0;
Y, if α = 0,

and has Y as its nullspace.

(ii) Prove that, with these vector operations, X/Y is a linear space. (X/Y is called a factor space.)

(iii) Prove that dimX/Y = codim Y .
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The dimension of IFT

Recall from (2.2) that IFT is the set of all scalar-valued maps on the set T , with the set T , offhand,
arbitrary.

The best known instance is n-dimensional coordinate space

IFn := IFn,

with T = n := {1, 2, . . . , n}. The vector space IFm×n of all (m × n)-matrices is another instance; here
T = m× n := {(i, j) : i = 1:m; j = 1:n}.

(4.23) Proposition: If #T := number of elements of T is finite, then dim IFT = #T .

Proof: Since T is finite, #T =: n say, we can order its elements, i.e., there is an invertible map
s : n→ T (in fact, there are n! = 1 · 2 · · ·n such). This induces the map

V : IFn → IFT : f 7→ f ◦ s−1

which is linear (since, in both spaces, the vector operations are pointwise), and is invertible since it has

IFT → IFn : g 7→ g ◦ s

as its inverse. Hence, V is a basis for IFT (the natural basis).

Note how we managed this without even exhibiting the columns of V . To be sure, the jth column V is
the function vj : T → IF : sk 7→ δkj that maps sj to 1 and maps any other t ∈ T to 0.

Corollary: dim IFm×n = mn.

Proof: In this case, IFm×n = IFT with T = m×n := {(i, j) : i = 1:m; j = 1:n}, hence #T = mn.

(4.24) Corollary: dimL(X, Y ) = dimX · dim Y .

Proof: Assuming that n := dimX and m := dimY are finite, we can represent every A ∈ L(X, Y )
as a matrix Â := W−1AV ∈ IFm×n, with V a basis for X and W a basis for Y . This sets up a map

R : L(X, Y )→ IFm×n : A 7→ Â = W−1AV,

and this map is linear and invertible (indeed, its inverse is the map IFm×n → L(X, Y ) : B 7→ WBV −1).
Consequently, by (4.17)Lemma, L(X, Y ) and IFm×n have the same dimension.
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Corollary: If #T 6<∞, then IFT is not finite-dimensional.

Proof: For every finite S ⊂ T , IFT contains the linear subspace

{f ∈ IFT : f(t) = 0, all t 6∈ S}
of dimension equal to dim IFS = #S. If #T 6< ∞, then T contains finite subsets S of arbitrarily large size,
hence IFT contains linear subspaces of arbitrarily large dimension, hence cannot itself be finite-dimensional,
by (4.13)Proposition.

4.18 Prove: The dimension of the vector space of all upper triangular matrices of order n is (n + 1)n/2.

Direct sums

A very useful coarsening of the basis concept concerns the sum of subspaces.
Let Y1, . . . , Yr be linear subspaces of the vector space X , let Vj be a column map onto Yj , all j, and

consider the column map
V := [V1, . . . , Vr].

To be sure, we could have also started with some arbitrary column map V into X , arbitrarily grouped its
columns to obtain V = [V1, . . . , Vr], and then defined Yj := ranVj , all j.

Either way, any a ∈ domV is of the form (a1, . . . , ar) with aj ∈ domVj , all j. Hence

ranV = {V1a1 + · · ·+ Vrar : aj ∈ domVj , j = 1:r} = {y1 + · · ·+ yr : yj ∈ Yj , j = 1:r} =: Y1 + · · ·+ Yr,

the sum of the subspaces Y1, . . . , Yr.
Think of this sum, as you may, as the range of the map

(4.25) A : Y1 × · · · × Yr → X : (y1, . . . , yr) 7→ y1 + · · ·+ yr.

Having this map A onto says that every x ∈ X can be written in the form y1 + · · ·+ yr with yj ∈ Yj ,
all j. In other words, X is the sum of the Yj . In symbols,

X = Y1 + · · ·+ Yr.

Having A also 1-1 says that there is exactly one way to write each x ∈ X as such a sum. In this case, we
write

X = Y1 +̇ · · · +̇Yr,

and say that X is the direct sum of the subspaces Yj . Note the dot atop the plus sign, to indicate the
special nature of this sum. Some books would use instead the encircled plus sign, ⊕, but we reserve that
sign for an even more special direct sum in which the summands Yj are ‘orthogonal’ to each other; see the
chapter on inner product spaces.

(4.26) Proposition: Let Vj be a basis for the linear subspace Yj of the vector space X , j = 1:r, and
set V := [V1, . . . , Vr]. Then, the following are equivalent.
(i) X = Y1 +̇ · · · +̇Yr.
(ii) V is a basis for X .
(iii) X = Y1 + · · ·+ Yr and dimX ≥ dimY1 + · · ·+ dim Yr.
(iv) For each j, Yj ∩ Y\j = {0}, with Y\j := Y1 + · · ·+ Yj−1 + Yj+1 + · · ·+ Yr, and dimX ≤ dimY1 +

· · ·+ dimYr.
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Proof: Since dom V = domV1 × · · · × domVr, and Vj is a basis for Yj , all j, the linear map

C : domV → Y1 × · · · × Yr : a = (a1, . . . , ar) 7→ (V1a1, . . . , Vrar)

is invertible and V = AC, with A as given in (4.25). Hence, V is invertible if and only if A is invertible.
This proves that (i) and (ii) are equivalent.

Also, (ii) implies (iii). As to (iii) implying (ii), the first assumption of (iii) says that V is onto X , and
the second assumption says that dimdomV = #V ≤ dim X , hence V is minimally onto and therefore a
basis for X .

As to (ii) implying (iv), the first claim of (iv) is a special case of (4.20)Corollary, and the second claim
is immediate.

Finally, as to (iv) implying (ii), assume that 0 = V a =
∑

j Vjaj . Then, for any j, y := Vjaj =
−∑

i6=j Viai ∈ Yj ∩ Y\j , hence y = 0 by the first assumption and, since Vj is a basis for Yj , hence 1-1, this
implies that aj = 0. In other words, V is 1-1, while, by the second assumption, #V =

∑
j dimYj ≥ dim X ,

hence V is maximally 1-1, therefore a basis for X .

(4.27) Corollary: If V is a basis for X , then, for any grouping V =: [V1, . . . , Vr] of the columns of V ,
X is the direct sum of the linear subspaces ranVj , j = 1:r.

One particular grouping is, of course, Vj = [vj ], all j, in which case each Yj := ranVj is a one-dimensional
linear subspace, i.e., a straight line through the origin, and we see X = ranV as the direct sum of these
straight lines, each of which we are accustomed to think of as a coordinate axis.

This is illustrated in (4.28)Figure for the special case ranV = IR2, hence V has just two columns. We
see each x ∈ IR2 written as the sum x = y1 + y2, with yj = ajvj ∈ Yj = ran[vj ] the Yj -component of x
(and, of course, a = (a1, a2) the coordinate vector of x with respect to the basis V ).

v1

x

y1

y2

v2

ran[v1]

ran[v2]

(4.28) Figure. A basis provides a coordinate system.

The direct sum construct is set up in just the same way, except that the Yj may be planes or even
higher-dimensional subspaces rather than just straight lines.

4.19 When X is the direct sum of Y and Z, then Z is said to be a complement of Y . With Y and Z linear subspaces
of the finite-dimensional vector space X, prove the following assertions concerning complements.
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(i) Y has a complement.

(ii) If both Z and Z1 complement Y , then dim Z = dimZ1. (This dimension is known as the codimension of Y , and is
denoted codim Y .) In particular, codim Y = dimX − dim Y .

(iii) codim(Y + Z) = codim Y + codim Z − codim(Y ∩ Z).

(iv) If Y has only one complement, then Y = {0} or Y = X.

(v) If codim Y > dim Z, then Y + Z 6= X.

(vi) If dimY > codim Z, then Y ∩ Z 6= {0}.
4.20 Let (d1, . . . , dr) be a sequence of natural numbers, and let X be an n-dimensional vector space. There exists a direct

sum decomposition
X = Y1 +̇ · · · +̇Yr

with dimYj = dj , all j, if and only if
∑

j
dj = n.

4.21 Let d be any scalar-valued map, defined on the collection of all linear subspaces of a finite-dimensional vector space X,
that satisfies the following two conditions: (i) Y ∩Z = {0} =⇒ d(Y + Z) = d(Y )+ d(Z); (ii) dimY = 1 =⇒ d(Y ) = 1.

Prove that d(Y ) = dim(Y ) for every linear subspace of X.

4.22 Prove that the cartesian product Y1 × · · · × Yr of vector spaces, all over the same scalar field IF, becomes a vector
space under pointwise or slotwise addition and multiplication by a scalar.

This vector space is called the product space with factors Y1, . . . , Yr.

Elimination in vector spaces

In the discussion of the (4.5)Basis Selection Algorithm, we left unanswered the unspoken question of
just how one would tell which columns of W ∈ L(IFm, X) are bound, hence end up in the resulting 1-1 map
V .

The answer is immediate in case X ⊂ IFr for some r, for then W is just an r×m-matrix, and elimination
does the trick since it is designed to determine the bound columns of a matrix. It works just as well when X
is, more generally, a subset of IFT for some set T , as long as T is finite, since we can then apply elimination
to the ‘matrix’

(4.29) W = (wj(t) : (t, j) ∈ T ×m)

whose rows are indexed by the (finitely many) elements of T .
Elimination even works when T is not finite, since looking for a pivot row in the matrix (4.29) with

infinitely many rows is only a practical difficulty. If τi is the row ‘index’ of the pivot row for the ith
bound column of W , i = 1:r, then we know that W has the same nullspace as the (finite-rowed) matrix
(wj(τi) : i = 1:r, j = 1:m). This proves, for arbitrary T , the following important

(4.30) Proposition: For any W ∈ L(IFm, IFT ), there exists a sequence (τ1, . . . , τr) in T , with r
equal to the number of bound columns in W , so that nullW is equal to the nullspace of the matrix
(wj(τi) : i = 1:r, j = 1:m).

In particular, W is 1-1 if and only if the matrix (wj(τi) : i, j = 1:m) is invertible for some sequence
(τ1, . . . , τm) in T .

If T is not finite, then we may not be able to determine in finite time whether or not a given column is
bound since we may have to look at infinitely many rows not yet used as pivot rows. The only efficient way
around this is to have W given to us in the form

W = UA,

with U some 1-1 column map, hence A a matrix. Under these circumstances, the kth column of W is free if
and only if the kth column of A is free, and the latter we can determine by elimination applied to A.

Indeed, if U is 1-1, then both W and A have the same nullspace, hence, by (4.3)Lemma, the kth column
of W is bound if and only if the kth column of A is bound.
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As an example, consider W = [w1, w2, w3, w4], with wj : IR→ IR : t 7→ sin(t− j), j = 1, 2, 3, 4. Hence,
by the addition formula,

W = UA, with U := [sin, cos], A :=
[

cos(−1) cos(−2) cos(−3) cos(−4)
sin(−1) sin(−2) sin(−3) sin(−4)

]
,

and we see at once that U is 1-1 ( e.g. from the fact that QU = id2, with Q : f 7→ (f(π/2), f(0))). We also
see at once that the first two columns of A are bound (e.g., since cos(1) cos(2) < 0 while sin(1) sin(2) > 0),
hence the remaining columns of A must be free (since there are no rows left to bind them). Consequently,
the first two columns of W are bound, while the last two columns are free.

Note that, necessarily, U is a basis for ranW since W = UA implies that ranW ⊂ ranU , hence having
two columns of W bound implies that 2 ≤ dim ranW ≤ dim ranU ≤ #U = 2, and so U is 1-1 onto ranW .

In general, it may be hard to find such a handy factorization W = UA for given W ∈ L(IFm, X). In
that case, we may have to discretize our problem by finding somehow some Q ∈ L(X, IFn) that is 1-1 on
ranW . With such a ‘data map’ Q in hand, we know that nullW equals the nullspace of the matrix QW .
In particular, the kth column of W is bound if and only if the kth column of the matrix QW is bound, and
elimination applied to QW will ferret out all those columns.

The need for suitable ‘data maps’ here in the general case is one of many reasons why we now turn to
the study of this second way of connecting our vector space X to some coordinate space, namely via linear
maps from X to IFn.

4.23 For each of the following column maps V = [v1, . . . , vr ] into the vector space Π4 of all real polynomials of degree
≤ 4, determine whether or not it is 1-1 and/or onto.

(a) [()3−()1+1, ()2+2()1+1, ()1−1]; (b) [()4−()1, ()3+2, ()2+()1−1, ()1+1]; (c) [1+()4, ()4+()3, ()3+()2, ()2+()1, ()1+1].

4.24 For each of the specific column maps V = [fj : j = 0:r] given below (with fj certain real-valued functions on the
real line), determine which columns are bound and which are free. Use this information to determine (i) a basis for ran V ; and
(ii) the smallest n so that fn ∈ ran[f0, f1, . . . , fn−1].

(a) r = 6, and fj : t 7→ (t − j)2, all j.

(b) r = 4 and fj : t 7→ sin(t − j), all j.

(c) r = 4 and fj : t 7→ exp(t− j), all j. (If you know enough about the exponential function, then you need not carry out any
calculation on this problem.)

4.25 Assume that τ1 < · · · < τ2k+1. Prove that W = [w0, . . . , wk] with wj : t 7→ (t − τj+1) · · · (t − τj+k) is a basis for
Πk. (Hint: Consider QW with Q : p 7→ (p(τk+1+i) : i = 0:k).)

4.26 Assume that (τ1, . . . , τ2k+1) is nondecreasing. Prove that W = [w0, . . . , wk] with wj : t 7→ (t − τj+1) · · · (t − τj+k)
is a basis for Πk if and only if τk < τk+1.

4.27 T/F

(a) If one of the columns of a column map is 0, then the map cannot be 1-1.

(b) If the column map V into IRn is 1-1, then V has at most n columns.

(c) If the column map V into IRn is onto, then V has at most n columns.

(d) If a column map fails to be 1-1, then it has a zero column.
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5. The inverse of a basis, and interpolation

Data maps

There are two ways to connect a given vector space X with the coordinate space IFn in a linear way,
namely by a linear map from IFn to X , and by a linear map to IFn from X . By now, we are thoroughly
familiar with the first kind, the column maps. It is time to learn something about the other kind.

A very important example is the inverse of a basis V : IFn → X for the vector space X , also known as
the coordinate map for that basis because it provides, for each x ∈ X , its coordinates with respect to
the basis, i.e., the n-vector a := V −1x for which x = V a. In effect, every invertible linear map from X to
IFn is a coordinate map, namely the coordinate map for its inverse. However, (nearly) every linear map from
X to IFn, invertible or not, is of interest, as a means of extracting numerical information from the elements
of X . For, we can, offhand, only compute with numbers, hence can ‘compute’ with elements of an abstract
vector space only in terms of numerical data about them.

Any linear map from the vector space X to IFn is necessarily of the form

f : X → IFn : x 7→ (fi(x) : i = 1:n),

with each fi = ei
t ◦ f a linear functional on X , i.e., a scalar-valued linear map on X . Here are some

standard examples.
5.1 For each of the following maps, determine whether or not it is a linear functional. (a) Πk → IR : p 7→ deg p; (b)

IR3 → IR : x 7→ 3x1 − 2x3; (c) C[a . . b] → IR : f 7→ maxa≤t≤b f(t); (d) C[a . . b] → IR : f 7→
∫ b

a
f(s)w(s) ds, with w ∈ C[a . . b];

(e) C(2)(IR) → IR : f 7→ a(t)D2f(t) + b(t)Df(t) + c(t)f(t), for some functions a, b, c defined on [a . . b] and some t ∈ [a . . b]. (f)

C(2)(IR) → C(IR) : f 7→ aD2f + bDf + cf , for some a, b, c ∈ C(IR).

Assume that X is a space of functions, hence X is a linear subspace of IFT for some set T . Then, for
each t ∈ T ,

δt : X → IF : x 7→ x(t)

is a linear functional on X , the linear functional of evaluation at t. For any n-sequence s = (s1, . . . , sn) in
T ,

X → IFn : f 7→ (f(s1), . . . , f(sn))

is a standard linear map from X to IFn.
If, more concretely, X is a linear subspace of C(n−1)[a . . b] and s ∈ [a . . b], then

X → IFn : f 7→ (f(s), Df(s), . . . , Dn−1f(s))

is another standard linear map from such X to IFn.
Finally, if X = IFm, then any linear map from X to IFn is necessarily a matrix. But it is convenient to

write this matrix in the form At for some A ∈ IFn×m, as such At acts on X via the rule

X 7→ IFn : x 7→ Atx = (A(:, j)tx : j = 1:n).

Because of this last example, we will call all linear maps from a vector space to a coordinate space row
maps, and use the notation

(5.1) Λt : X → IFn : x 7→ (λix : i = 1:n) =: [λ1, . . . , λn]tx,

calling the linear functional λi the ith row of this map. We will also call such maps data maps since they
extract numerical information from the elements of X . There is no hope of doing any practical work with
the vector space X unless we have a ready supply of such data maps on X . For, by and large, we can only
compute with numbers.

(5.2)Proposition: If Λt = [λ1, λ2, . . . , λn]t : X → IFn and B ∈ L(U, X), then ΛtB = [λ1B, . . . , λnB]t.
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