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A formula for the coordinate map

Let V ∈ L(IFn, X) be a basis for the vector space X . How do we find the coordinates

(5.3) a = V −1x

for given x ∈ X?
Offhand, we solve the (linear) equation V ? = x for a. Since V is a basis, we know that this equation

has exactly one solution. But that is not the same thing as having a concrete formula for a in terms of x.
If X = IFn, then V −1 is a matrix; in this case, (5.3) is an explicit formula. However, even if X ⊂ IFn

but X 6= IFn, then (5.3) is merely a formal expression.

(5.4) Example: If V is a basis for some linear subspace X of IFn, then we can obtain a formula for
V −1 via elimination as follows.

Act as if V were invertible, i.e., apply elimination to [V, idn]. Let r := #V . Since V is 1-1, the first
r columns in [V, idn] are bound, hence we are able to produce, via elimination, an equivalent matrix R for
which R(q, 1:r) = idr, for some r-sequence q. Since we obtain R from [V, idn] by (invertible) row operations,
we know that R = M [V, idn] = [MV, M ] for some invertible matrix M . In particular,

idr = R(q, 1:r) = (MV )(q, :) = M(q, :)V,

showing M(q, :) = R(q, r + (1:n)) to be a left inverse for V , hence equal to V −1 when restricted to ranV .
Suppose, in particular, that we carry elimination all the way through, to obtain R = rref([V, idn]).

Then, q = 1:r and, with r + b and r + f the bound and free columns of [V, idn] other than the columns of
V , we necessarily have M(q, b) = 0, hence, for this choice of M , we get

V −1x = M(q, :)x = M(q, f)x(f), x ∈ X := ranV.

In effect, we have replaced here the equation V ? = x by the equivalent equation

V (f, :)? = x(f)

whose coefficient matrix is invertible. (In particular, #f = #V ; see H.P.(5.3).)

5.2 For each of the following bases V of the linear subspace ran V of IFn, give a matrix U for which Ux gives the
coordinates of x ∈ ran V with respect to the basis V . How would you check your answer?

(a) V =

[
1
1

]
; (b) V = [e2, e1, e3] ∈ IR3×3; (c) V =

[
1 2
2 4
0 6

]
; (d) V =


 1 0

0 0
−1 1
2 −2


.

5.3 Prove the claim at the end of (5.4)Example.

This reduction, of the abstract linear equation V ? = x to a uniquely solvable square linear system, also
works in the general setting.

To obtain a concrete expression, we discretize the abstract equation V ? = x by considering instead
the numerical equation

ΛtV ? = Λtx

for some suitable data map Λt ∈ L(Y, IFn) defined on some vector space Y ⊃ X . Here, ‘suitable’ means that
the matrix ΛtV is invertible, for then the unique solution of this equation must be the sought-for coordinate
vector for x ∈ X with respect to the basis V , i.e.,

a = V −1x = (ΛtV )−1Λtx.

In (5.4)Example, we simply chose the linear map y 7→ y(f) as our Λt, i.e., Λt = idn(f, :) = [ej : j ∈ f]t,
with f chosen, in effect, to ensure that ΛtV = V (f, :) is invertible. We indeed obtained there V −1 as

x 7→ U(:, f)x(f) = V (f, :)−1x(f) = (ΛtV )−1Λtx.
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58 5. The inverse of a basis, and interpolation

How would one find a ‘suitable’ data map in general? That depends on the particular circumstances.
For example, if V ∈ L(IFn, Y ) and Λt ∈ L(Y, IFn), and we somehow know that Λt maps X := ranV = V (IFn)
onto IFn, then we know that ΛtV maps IFn onto IFn, hence, being a square matrix, ΛtV must be invertible.
Conversely, if ΛtV is invertible, then V must be 1-1, hence provides a basis for its range, and Λt must map
ranV onto IFn.

(5.5) Proposition: If the linear map V : IFn → X ⊂ Y is onto, and Λt ∈ L(Y, IFn) is such that their
Gramian matrix, ΛtV , is invertible, then V is a basis for X , and its inverse is

V −1 : X → IFn : x 7→ (ΛtV )−1Λtx.

Change of basis

To be sure, under the assumptions of (5.5)Proposition, we also know that Λt maps X onto IFn, hence,
since both X and IFn are of the same finite dimension, the restriction of Λt to X must be invertible as a
linear map to IFn. Consequently, there must be an invertible W ∈ L(IFn, X), i.e., a basis W for X , with
ΛtW = idn.

Hence, the right side in our numerical equation ΛtV ? = Λtx is the coordinate vector for x ∈ X with
respect to this basis W for X . In other words, our great scheme for computing the coordinates of x ∈ X
with respect to the basis V for X requires us to know the coordinates of x with respect to some basis for X .
In other words, the entire calculation is just a change of basis, with ΛtV = W−1V the socalled transition
matrix that carries the V -coordinates of x to the W -coordinates of x.

However, this in no way diminishes its importance. For, we really have no choice in this matter. We
cannot compute without having numbers to start with. Also, we often have ready access to the coordinate
vector Λtx without having in hand the corresponding basis W . At the same time, we may much prefer to
know the coordinates of x with respect to a different basis.

For example, we know from (3.21)Proposition that, with (τ1, . . . , τk) any sequence of pairwise distinct
real numbers, the linear map Λt : p 7→ (p(τ1), . . . , p(τk)) is 1-1 on the k-dimensional space Π<k, hence provides
the coordinates of p ∈ Π<k with respect to a certain basis W of Π<k, namely the socalled Lagrange basis
whose columns can be verified to be the so-called Lagrange fundamental polynomials

(5.6) `j : t 7→
∏
h 6=j

t − τh

τj − τh
, j = 1:k.

However, you can imagine that it is a challenge to differentiate or integrate a polynomial written in terms of
this basis. Much better for that to have the coordinates of the polynomial with respect to the power basis
V = [()0, . . . , ()k−1].

5.4 What are the coordinates of p ∈ Πk with respect to the Lagrange basis for Π<k for the points τ1, . . . , τk?

5.5 Find the value at 0 of the quadratic polynomial p, for which p(−1) = p(1) = 3 and Dp(1) = 6.

5.6 Find a formula for p(0) in terms of p(−1), p(1) and Dp(1), assuming that p is a quadratic polynomial.

5.7 Find the coordinates for the polynomial q(t) = 3−4t+2t2 with respect to the basis W := [()0, ()0 +()1, ()0 +()1 +()2]
of the space of quadratic polynomials. (Hint: you are given the coordinates for q wrto V := [()0, ()1, ()2] = W (W−1V ) and can
easily determine W−1V )−1 = V −1W .)

5.8 Under the assumptions of (5.5)Proposition, the restriction of the data map Λt to that subspace X must be invertible.
Prove that its inverse is W := V (ΛtV )−1.

5.9 Find the coordinates for the polynomial q(t) = 3−4t+2t2 with respect to the basis W := [()0, ()0 +()1, ()0 +()1 +()2]
of the space of quadratic polynomials. (Hint: you are given the coordinates for q wrto V := [()0, ()1, ()2] = W (W−1V ) and can
easily determine W−1V )−1 = V −1W .)

5.10 Let v1, . . . , vn be a sequence of (n− 1)-times continuously differentiable functions, all defined on the interval [a . . b].
For x ∈ [a . . b], the matrix

W (v1, . . . , vn; x) := (Di−1vj(x) : i, j = 1:n)
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Interpolation and linear projectors 59

is called the Wronski matrix at x for the sequence (vj : j = 1:n).

Prove that V := [v1, . . . , vn] is 1-1 in case, for some x ∈ [a . . b], W (v1, . . . , vn; x) is invertible. (Hint: Consider the Gram

matrix ΛtV with Λtf := (f(x), f ′(x), . . . , Dn−1f(x)).)

Interpolation and linear projectors

As (3.20)Example already intimates, our formula in (5.5) for the inverse of a basis V ∈ L(IFn, X) can
be much more than that. It is useful for interpolation in the following way. Assuming that ΛtV is invertible,
it follows that, for any y ∈ Y , x = V (ΛtV )−1Λty is the unique element in X that agrees with y at Λt in
the sense that

Λtx = Λty.

To recall the specifics of (3.20)Example, if X = Π<k and Λt : f 7→ (f(τi) : i = 1:k), with τ1 < · · · < τk,
then, by (3.21)Proposition, for arbitrary f : IR → IR, there is exactly one polynomial p of degree < k for
which p(τi) = f(τi), i = 1:k.

One can readily imagine other examples.

Example: In Hermite interpolation, one specifies not only values but also derivatives. For example,
in two-point Hermite interpolation from Π<k, one picks two points, t 6= u, and two nonnegative integers r
and s with r + 1 + s + 1 = k, and defines

Λt : f 7→ (f(t), Df(t), . . . , Drf(t), f(u), Df(u), . . . , Dsf(u)).

Now the requirement that Λtp = Λtf amounts to looking for p ∈ Π<k that agrees with f in the sense that
p and f have the same derivative values of order 0, 1, . . . , r at t and the same derivative values of order
0, 1, . . . , s at u.

Example: Recall from Calculus the bivariate Taylor series

f(s, t) = f(0) + Dsf(0) s + Dtf(0) t +
(
Ds

2f(0)s2 + DsDtf(0)st + DtDsf(0)ts + Dt
2f(0)t2

)
/2 + h.o.t.

In particular, for any smooth function f , the quadratic polynomial

p : (s, t) 7→ f(0) + Dsf(0) s + Dtf(0) t +
(
Ds

2f(0)s2 + 2DsDtf(0)st + Dt
2f(0)t2

)
/2

is the unique quadratic polynomial that matches the information about f given by the data map

Λt : f 7→ (f(0), Dsf(0), Dtf(0), D2
sf(0), DsDtf(0), D2

t f(0)).

Example: When dealing with Fourier series, one uses the data map

Λt : f 7→ (
∫ 2π

0

f(t) cis(jt) dt : j = 0:N),

with cis standing for ‘sine and cosine’. One looks for a trigonometric polynomial

p = [cis(j·) : j = 0:N ]a

that satisfies Λtp = Λtf , and finds it in the truncated Fourier series for f .
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60 5. The inverse of a basis, and interpolation

Directly from (5.5)Proposition, we obtain (under the assumptions of that proposition) the following
pretty formula

(5.7) x = Py := V (ΛtV )−1Λty

for the interpolant x ∈ X to given y ∈ Y with respect to the data map Λt. The linear map P := V (ΛtV )−1Λt

so defined on Y is very special:

(5.8) Proposition: Let the linear map V : IFn → Y be onto X ⊂ Y , and let Λt ∈ L(Y, IFn) be such
that their Gramian matrix, ΛtV , is invertible. Then P := V (ΛtV )−1Λt is a linear map on Y with the
following properties:
(i) P is the identity on X = ranV .
(ii) ranP = ranV = X .
(iii) P is a projector or idempotent, i.e., PP = P , hence P ( id − P ) = 0.
(iv) nullP = null Λt = ran( id − P ).
(v) Y is the direct sum of ranP and nullP , i.e., Y = ranP +̇ nullP .

Proof: (i) PV = V (ΛtV )−1Λt V = V id = V , hence P (V a) = V a for all a ∈ IFn.
(ii) Since P = V A for some A, we have that ranP ⊂ ranV , while PV = V implies that ranP ⊃ ranV .
(iii) By (i) and (ii), P is the identity on its range, hence, in particular, PP = P , or, equivalently,

P ( id − P ) = 0.
(iv) The fact that P = AΛt for some A implies that null P ⊃ null Λt, while also

ΛtP = Λt V (ΛtV )−1Λt = idnΛt = Λt,

hence also null P ⊂ null Λ. As to null P = ran( id − P ), note that x ∈ null P implies that x = x − Px =
( id − P )x ∈ ran( id − P ), while, conversely, null P ⊃ ran( id − P ) since, by (iii), P ( id − P ) = 0.

(v) For any y ∈ Y , y = Py + ( id − P )y ∈ ranP + null P , by (iv), hence Y = ranP + null P . If also
y = x + z for some x ∈ ranP and some z ∈ null P , then, by (i) and (iv), Py = P (x + z) = Px + Pz = x,
therefore also z = y − x = y − Py = ( id − P )y, showing such a decomposition to be unique.

5.11 Consider the linear map Q given on X = {f : IR → IR} by Qf(t) = (f(t) + f(−t))/2. Prove that Q is a linear
projector. Also, give a succinct description of its range and its nullspace. (Hint: consider the map F : X → X defined by
(Ff)(t) = −f(t))

(5.9) Example: We specialize the general situation of (5.8)Proposition to the case V : IR1 → X ⊂ IR2,
so we can draw a figure like (5.10)Figure.

Take Y = IR2, and let v ∈ IR2 6= 0, hence X := ranV with V := [v] is 1-dimensional. The general linear
map Λt : IR2 → IR1 is of the form [w]t for some w ∈ IR2, and the requirement that ΛtV be invertible reduces
to the requirement that [w]t[v] = wtv 6= 0.

With V = [v] and Λt = [w]t so chosen, the linear projector P becomes

P :=
vwt

wtv
: y 7→ v

wty

wtv
.

We readily verify directly that

PP =
vwt

wtv

vwt

wtv
=

v wtv wt

(wtv) (wtv)
=

vwt

wtv
= P,
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Interpolation and linear projectors 61

i.e., that P is a linear projector. Its range equals ran[v], i.e., the straight line through the origin in the
direction of v. Its nullspace equals null[w]t and this is necessarily also 1-dimensional, by (4.15)Dimension
Formula, hence is the straight line through the origin perpendicular to w. The two lines have only the origin
in common since y ∈ ranP ∩ null P implies that y = vα for some scalar α, therefore 0 = wty = wtvα and
this implies that α = 0 since wtv 6= 0 by assumption.

v

y

Py

( id − P )y

w

ranP = ran[v]

null P = w⊥ = null[w]t

(5.10) Figure. The direct sum decomposition provided by a certain linear
projector. Compare this to (4.28)Figure.

We can locate the two summands in the split

y = Py + ( id − P )y

graphically (see (5.10)Figure): To find Py, draw the line through y parallel to null P ; its unique intersection
with ranP = ran[v] is Py. The process of locating ( id −P )y is the same, with the roles of ranP and nullP
reversed: Now draw the line through y parallel to ranP ; its unique intersection with nullP is the element
( id − P )y.

This shows graphically that, for each y, Py is the unique element of ranP for which wtPy = wty, i.e.,
the unique point in the intersection of ranP and y + null[w]t.

It is useful to note that, for any linear projector P , also ( id−P ) is a linear projector (since ( id−P )( id−
P ) = id−P −P +PP = id−P ), and that any direct sum decomposition Y = X +̇Z of a finite-dimensional
Y necessarily has X = ranP and Z = null P for some linear projector P . The following is a more general
such claim, of use later.
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62 5. The inverse of a basis, and interpolation

(5.11) Proposition: Let X1, . . . , Xr be linear subspaces of the finite-dimensional vector space Y .
Then the following are equivalent.
(i) Y is the direct sum of the Xj , i.e., Y = X1 +̇ · · · +̇Xr.
(ii) There exist Pj ∈ L(Y ) with ranPj = Xj so that

(5.12) idY = P1 + · · · + Pr

and

(5.13) PjPk =
{

Pj = Pk if j = k;
0 otherwise.

In particular, each Pj is a linear projector.
Also, the conditions in (ii) uniquely determine the Pj .

Proof: Let Vj be a basis for Xj, all j. By (4.26)Proposition, (i) is equivalent to having V :=
[V1, . . . , Vr] be a basis for Y .

‘(i) =⇒ (ii)’: By assumption, V is a basis for Y . Let V −1 =: Λt =: [Λ1, . . . ,Λr]t be its inverse, grouped
correspondingly. Then

iddim Y = ΛtV = [Λ1, . . . ,Λr]t[V1, . . . , Vr] = (Λi
tVj : i, j = 1:r),

i.e.,

Λi
tVj =

{
id if i = j;
0 otherwise.

Hence, the linear maps

Pj := VjΛj
t, j = 1:r,

satisfy (5.13), and ranPj = Xj, for all j. But also

idY = V Λt = [V1, . . . , Vr][Λ1, . . . ,Λr]t =
∑

j

VjΛj
t,

showing (5.12).
‘(ii) =⇒ (i)’: By assumption, ranPj = ranVj , all j. Therefore, by assumption (5.13),

(5.14) PjVi =
{

Vj if j = i;
0 otherwise.

Therefore, 0 = V a =
∑

i Viai implies, for any particular j, that 0 = Pj0 = PjV a =
∑

i PjViai = PjVjaj =
Vjaj , hence aj = 0 (since Vj is 1-1). It follows that V is 1-1. On the other hand, the assumption (5.12)
implies that V is onto. Hence, V is a basis for Y .

Finally, to prove the uniqueness of the Pj satisfying (ii), notice that (5.14) pins down Pj on all the
columns of V . Since (ii) implies that V is a basis for Y , this therefore determines Pj uniquely (by (4.2)Propo-
sition).
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Interpolation and linear projectors 63

Returning to the issue of interpolation, this gives the following

(5.15)Corollary: If V ∈ L(IFn, Y ) is 1-1, and Λt ∈ L(Y, IFn) is such that ranV ∩ null Λt = {0}, then
P := V (ΛtV )−1Λt is well-defined; it is the unique linear projector P with

(5.16) ranP = ranV, null P = null Λt.

In particular, then Λt is onto, and

(5.17) Y = ranV +̇ null Λt.

For an arbitrary abstract vector space, it may be very hard to come up with suitable concrete data
maps. For that reason, we now consider a particular kind of vector space for which it is very easy to provide
suitable data maps, namely the inner product spaces.
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64 6. Inner product spaces

6. Inner product spaces

Definition and examples

Inner product spaces are vector spaces with an additional operation, the inner product. Here is the
definition.

(6.1) Definition: An inner product space is a vector space Y (over the field IF = IR or C) and an
inner product, meaning a map

〈, 〉 : Y × Y → IF : (x, y) 7→ 〈x, y〉

that is
(a) positive definite, i.e., ‖x‖2 := 〈x, x〉 ≥ 0, with equality iff x = 0;
(b) linear in its first argument, i.e., 〈·, y〉 ∈ L(Y, IF);
(c) hermitian, or skew-symmetric, i.e., 〈y, x〉 = 〈x, y〉.

You already know an inner product space, namely n-dimensional Euclidean space, i.e., the space of
n-vectors with the inner product

〈x, y〉 := ytx =
∑

j

xjyj =: ycx,

though you may know it under the name scalar product or dot product. In particular, (b) and (c) are
obvious in this case. As to (a), observe that, for any complex number z = u + iv,

zz = (u − iv)(u + iv) = u2 + v2 = |z|2 ≥ 0,

with equality if and only if u = 0 = v, i.e., z = 0. Hence, for any x ∈ IFn,

〈x, x〉 = xtx = |x1|2 + · · · + |xn|2 ≥ 0,

with equality iff all the xj are zero, i.e., x = 0.
Of course, if the scalar field is IR, we can forget about taking complex conjugates since then x = x. But

if IF = C, then it is essential that we define 〈x, y〉 as ycx = ytx rather than as ytx since we would not get
positive definiteness otherwise. Indeed, if z is a complex number, then there is no reason to think that z2 is
nonnegative, and the following calculation

(1, i)t(1, i) = 12 + (i)2 = 1 − 1 = 0

shows that, for a complex x, xtx can be zero without x being zero.
So, why not simply stick with IF = IR? Work on eigenvalues requires consideration of complex scalars

(since it relies on zeros of polynomials, and a polynomial may have complex zeros even if all its coefficients
are real). For this reason, we have taken the trouble all along to take into account the possibility that IF
might be C. It is a minor nuisance at this point, but will save time later.

Another example of an inner product space of great practical interest is the space Y =
◦
C of all continuous

2π-periodic functions, with the inner product

〈f, g〉 :=
∫ 2π

0

f(t)g(t) dt.
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