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hence this A has rank 1 (since we can write it as A = V Λt with dom V = IF1, but we couldn’t do it with
domV = IF0). To calculate Ax, we merely need to calculate the number α := (1, 2, 3, 4, 5)tx, and then obtain
Ax as the particular scalar multiple yα of the vector y := (1, 1, 1, 1). That is much cheaper than computing
the matrix product of the 4× 5-matrix A with the 1-column matrix [x].

As the example illustrates, any matrix
A := [v][w]t = vwt

with v ∈ IFm and w ∈ IFn has rank 1 unless it is trivial, i.e., unless either v or w is the zero vector. This
explains why an elementary matrix is also called a rank-one perturbation of the identity.

The only linear map of rank 0 is the zero map. If A is not the zero map, then its range contains some
nonzero vector, hence so must the range of any V for which A = V Λt with domV = IFr, therefore such r
must be > 0.

As another example, for any vector space X ,
dimX = rank idX .

Indeed, if n = dimX , then, for any basis V ∈ L(IFn, X) for X , idX = V V −1, therefore rank idX ≤ n, while,
for any factorization idX = V Λt for some V ∈ L(IFr, X), V must necessarily be onto, hence dimX ≤ r,
by (4.6)Proposition, and therefore dimX ≤ rank idX . In fact, it is possible to make the rank concept the
primary one and define dimX as the rank of idX .

When A is an m× n-matrix, then, trivially, A = A idn = idmA, hence rankA ≤ min{m, n}.
At times, particularly when A is a matrix, it is convenient to write the factorization A = V Λt more

explicitly as

(8.1) A =: [v1, v2, . . . , vr][λ1, λ2, . . . , λr]t =
r∑

j=1

[vj ]λj .

Since each of the maps
vjλj := [vj ]λj = [vj ] ◦ λj : x 7→ (λjx)vj

has rank ≤ 1, this shows that the rank of A gives the smallest number of terms necessary to write A as a
sum of rank-one maps.

(8.2) Proposition: A = V Λt is minimal if and only if V is a basis for ranA. In particular,

rankA = dim ranA.

Proof: Let A = V Λt. Then ranA ⊂ ranV , hence
dim ranA ≤ dim ranV ≤ #V,

with equality in the first ≤ iff ranA = ranV (by (4.13)Proposition), and in the second ≤ iff V is 1-1. Thus,
dim ranA ≤ #V , with equality iff V is a basis for ranA.

One can prove in a similar way that A = V Λt is minimal if and only if Λt is onto and null A = null Λt.

(8.3) Corollary: The factorization A = A(:, bound)rrref(A) provided by elimination (see (3.11)) is
minimal.

(8.4) Corollary: If A = V Λt is minimal and A is invertible, then also V and Λt are invertible.

Proof: By (8.2)Proposition, V ∈ L(IFr, Y ) is a basis for ranA, while ranA = Y since A is invertible.
Hence, V is invertible. Therefore, also Λt = V −1A is invertible.
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84 8. Factorization and rank

But note that the matrix [ 1 ] = [ 1 0 ]
[

1
0

]
is invertible, even though neither of its two factors is.

8.1 Determine a minimal factorization for the matrix
 1 2 0 3 4

4 3 0 2 1
1 1 0 1 1
8 7 0 6 5




8.2 With A the matrix of the previous problem, give a basis for ranA and a basis for ran At.

8.3 Give an example of a pair of matrices, A and B, of order 4, each of rank 2, yet ran A ∩ ran B = {0}.
8.4 Prove: For any two linear maps A and B for which AB is defined, rank(AB) ≤ min{rank A, rank B}. (Hint: If

A = VAΛA
t and B = VBΛB

t, then AB = VA(ΛA
tVBΛB

t) = (VAΛA
tVB)ΛB

t. Totally different hint: Use the Dimension
Formula together with the fact that rank C = dim ranC.)

The trace of a linear map

Each A ∈ L(X) can be factored in possibly many different ways as

A = V Λt = [v1, . . . , vn][λ1, . . . , λn]t

for some n (necessarily ≥ rankA). It may therefore be surprising that, nevertheless, the number

∑
j

λjvj

only depends on A. For the proof of this claim, we notice that∑
j

λjvj = trace(ΛtV ).

Now, let W be a basis for X , with dual basis M := W−1. Then

Â := MtAW = MtV ΛtW,

while
ΛtWMtV = ΛtV.

Hence, by (6.27),
trace(Â) = trace(MtV ΛtW ) = trace(ΛtWMtV ) = trace(ΛtV ).

By holding our factorization A = V Λt fixed, this implies that trace(Â) does not depend on the particular
basis W for X we happen to use here, hence only depends on the linear map A. With that, holding now this
linear map A fixed, we see that also trace(ΛtV ) does not depend on the particular factorization A = V Λt

we picked, but only depends on A. This number is called the trace of A, written

trace(A).

The problems provide the basic properties of the trace of a linear map.
8.5 trace( idX) = dimX.

8.6 If P ∈ L(X) is a projector (i.e., P 2 = P ), then trace(P ) = dim ranP .

8.7 A 7→ trace(A) is the unique scalar-valued linear map on L(X) for which trace([x]λ) = λx for all x ∈ X and λ ∈ X′.
8.8 If A ∈ L(X, Y ) and B ∈ L(Y, X), then (both AB and BA are defined and) trace(AB) = trace(BA).

8.9 Prove that, for column maps V , W into X, and row maps Λt, Mt from X, V Λt = WMt implies that trace(ΛtV ) =

trace(MtW ) even if X is not finite-dimensional.
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Elimination as factorization 85

The rank of a matrix and of its (conjugate) transpose

In this section, let A′ denote either the transpose or the conjugate transpose of the matrix A. Then,
either way, A = V W ′ iff A′ = WV ′. This trivial observation implies all kinds of things about the relationship
between a matrix and its (conjugate) transpose.

As a starter, it says that A = V W ′ is minimal if and only if A′ = WV ′ is minimal. Therefore:

Proposition: rankA = rankAc = rankAt.

(8.5) Corollary: If A is a matrix, then dim ranA = dim ranAc = dim ranAt.

(8.6) Corollary: For any matrix A, A′ is 1-1 (onto) if and only if A is onto (1-1).

Proof: If A ∈ IFm×n, then A is onto iff rankA = m iff rankA′ = m iff the natural factorization
A′ = A′ idm is minimal, i.e., iff A′ is 1-1.

The other equivalence follows from this since (A′)′ = A.

For a different proof of these results, see the comments that follow (6.17)Corollary and (6.18)Corollary.

Elimination as factorization

The description (3.2) of elimination does not rely on any particular ordering of the rows of the given
(m × n)-matrix A. At any stage, it only distinguishes between pivot rows and those rows not yet used as
pivot rows. We may therefore imagine that we initially place the rows of A into the workarray B in exactly
the order in which they are going to be used as pivot rows, followed, in any order whatsoever, by those rows
(if any) that are never going to be used as pivot rows.

In terms of the n-vector p provided by the (3.2)Elimination Algorithm, this means that we
start with B = A(q, :), with q obtained from p by

q = p(find(p>0)); 1:m; ans(q) = []; q = [q, ans];

Indeed, to recall, p(j) is positive if and only if the jth unknown is bound, in which case row p(j)
is the pivot row for that unknown. Thus the assignment q = p(find(p>0)) initializes q so that
A(q,:) contains the pivot rows in order of their use. With that, 1:m; ans(q) = [] leaves, in ans,
the indices of all rows not used as pivot rows.

Note that q is a permutation of order m. Hence B = QA, with Q the corresponding permu-
tation matrix, meaning the matrix obtained from the identity matrix by the very same reordering,
Q =eye(m)(q,:).

We prefer to write this as A = PB, with P the inverse of Q, hence obtainable from q by

P = eye(m); P(q,:) = P;

19aug02 c©2002 Carl de Boor



86 8. Factorization and rank

With that done, we have, at the beginning of the algorithm,

B = P−1A

for some permutation matrix P , and all the work in the algorithm consists of repeatedly subtracting some
multiple α of some row h of B from some later row, i.e., some row i with i > h. In terms of matrices, this
means the repeated replacement

B ← Ei,h(−α)B

with i > h. Since, by (2.19), Ei,h(−α)−1 = Ei,h(α), this implies that

A = PLU,

with L the product of all those elementary matrices Ei,h(α) (in the appropriate order), and U the final state
of the workarray B. Specifically, U is in row-echelon form (as defined in (3.7)); in particular, U is upper
triangular.

Each Ei,h(α) is unit lower triangular, i.e., of the form id + N with N strictly lower triangular,
i.e.,

N(r, s) 6= 0 =⇒ r > s.

For, because of the initial ordering of the rows in B, only Ei,h(α) with i > h appear. This implies that L,
as the product of unit lower triangular matrices, is itself unit lower triangular.

If we apply the elimination algorithm to the matrix [A, C], with A ∈ IFm×m invertible, then the first
m columns are bound, hence the remaining columns are free. In particular, both P and L in the resulting
factorization depend only on A and not at all on C.

In particular, in solving A? = y, there is no need to subject all of [A, y] to the elimination algorithm. If
elimination just applied to A gives the factorization

(8.7) A = PLU

for an invertible A, then we can find the unique solution x to the equation A? = y by the two-step process:

c← L−1P−1y

x← U−1c

and these two steps are easily carried out. The first step amounts to subjecting the rows of the matrix [y] to all
the row operations (including reordering) used during elimination applied to A. The second step is handled
by the Backsubstitution Algorithm (3.3), with input B = [U, c], p = (1, 2, . . . , m, 0), and z = (0, . . . , 0,−1).

Once it is understood that the purpose of elimination for solving A? = y is the factorization of A into
a product of “easily” invertible factors, then it is possible to seek factorizations that might serve the same
goal in a better way. The best-known alternative is the QR factorization, in which one obtains

A = QR,

with R upper triangular and Q o.n., i.e., QcQ = id. Such a factorization is obtained by doing elimination
a column at a time, usually with the aid of Householder matrices. These are elementary matrices of the
form

Hw := Ew,w(−2/wcw) = id − 2
wcw

wwc,

and are easily seen to be self-inverse or involutory (i.e., HwHw = id), hermitian (i.e., Hw
c = Hw),

hence unitary (i.e., Hw
cHw = id = HwHw

c).
While the computational cost of constructing the QR factorization is roughly double that needed for

the PLU factorization, the QR factorization has the advantage of being more impervious to the effects of
rounding errors. Precisely, the relative rounding error effects in both a PLU factorization A = PLU and in a
QR factorization A = QR can be shown to be proportional to the condition numbers of the factors. Since Q
is o.n., κ(Q) = 1 and κ(R) = κ(A), while, for a PLU factorization A = PLU , only the permutation matrix,
P , is o.n., and κ(L) and κ(U) can be quite large.
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SVD

Let A = V W c be a minimal factorization for the m × n-matrix A of rank r. Then Ac = WV c is a
minimal factorization for Ac. By (8.2), this implies that V is a basis for ranA and W is a basis for ranAc.

Can we choose both these bases to be o.n.?
Well, if both V and W are o.n., then, for any x, ‖Ax‖ = ‖V W cx‖ = ‖W cx‖, while, for x ∈ ranAc,

x = WW cx, hence ‖x‖ = ‖W cx‖. Therefore, altogether, in such a case, A is an isometry on ranAc, a very
special situation.

Nevertheless and, perhaps, surprisingly, there is an o.n. basis W for ranAc for which the columns of
AW are orthogonal, i.e., AW = V Σ with V o.n. and Σ diagonal, hence A = V ΣW c with also V o.n.

(8.8) Theorem: For every A ∈ IFm×n, there exist o.n. bases V and W for ranA and ranAc, respec-
tively, and a diagonal matrix Σ with positive diagonal entries, so that

(8.9) A = V ΣW c.

Proof: For efficiency, the proof given here uses results, concerning the eigenstructure of hermitian
positive definite matrices, that are established only later in these notes. This may help to motivate the study
to come of the eigenstructure of matrices.

For motivation of the proof, assume for the moment that A = V ΣW c is a factorization of the kind we
claim to exist. Then, with Σ =: diag(σ1, . . . , σr), it follows that

AcA = WΣcV c V ΣW c = WΣcΣW c,

hence

(8.10) AcAW = WT, with T := diag(τ1, τ2, . . . , τr)

and W o.n., and the τj = σjσj = |σj |2 all positive.
Just such an o.n. W ∈ IFn×r and positive scalars τj do exist by (12.2)Corollary and (15.2)Proposition,

since the matrix AcA is hermitian (i.e., (AcA)c = AcA) and positive semidefinite (i.e., 〈AcAx, x〉 ≥ 0
for all x) and has rank r.

With W and the τj so chosen, it follows that W is an o.n. basis for ranAc, since (8.10) implies that
ranW ⊂ ranAc, and W is a 1-1 column map of order r = dim ranAc. Further, U := AW satisfies
U cU = W cAcAW = W cWT = T, hence

V := AWΣ−1, with Σ := T1/2 := diag(
√

τj : j = 1:r),

is o.n., and so V ΣW c = A, because WW c = P := Pran Ac , hence ran( id − P ) = nullP = ranAc⊥ = null A,
and so AWW c = AP = A(P + ( id − P )) = A.

It is customary to order the numbers

σj :=
√

τj , j = 1:r.

Specifically, one assumes that
σ1 ≥ σ2 ≥ · · · ≥ σr.

These numbers σj are called the (nonzero) singular values of A, and with this ordering, the factorization

A =
rank A∑
j=1

vjσjwj
c
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88 8. Factorization and rank

is called a (reduced) singular value decomposition or svd for A.
Offhand, a svd is not unique. E.g., any o.n. basis V for IFn provides the svd V idnV c for idn.
Some prefer to have a factorization A = Ṽ Σ̃W̃ c in which both Ṽ and W̃ are o.n. bases for all of IFm

and IFn, respectively (rather than just for ranA and ranAc, respectively). This can always be achieved by
extending V and W from (8.9) in any manner whatsoever to o.n. bases Ṽ := [V, V1] and W̃ := [W, W1] and,
correspondingly, extending Σ to

Σ̃ := diag(Σ, 0) =
[

Σ 0
0 0

]
∈ IFm×n

by the adjunction of blocks of 0 of appropriate size. With this, we have

(8.11) A = Ṽ Σ̃W̃ c =
min{m,n}∑

j=1

vjσjwj
c,

and the diagonal entries
σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σmin{m,n}

of Σ̃ are altogether referred to as the singular values of A. Note that this sequence is still ordered. We
will refer to (8.11) as a Singular Value Decomposition or SVD.

The MATLAB command svd(A) returns the SVD rather than the svd of A when issued in the
form [V,S,W] = svd(A). Specifically, A = V*S*W’, with V and W both unitary, of order m and
n, respectively, if A is an m × n-matrix. By itself, svd(A) returns, in a one-column matrix, the
(ordered) sequence of singular values of A.

The Pseudo-inverse

Here is a first of many uses to which the svd has been put. It concerns the solution of the equation

A? = y

in case A is not invertible (for whatever reason). In a previous chapter (see page 69), we looked in this case
for a solution of the ‘projected’ problem

(8.12) A? = Pran Ay =: ŷ

for the simple reason that any solution x of this equation makes the residual ‖Ax− y‖2 as small as it can
be made by any x. For this reason, any solution of (8.12) is called a least-squares solution for A? = y.

If now A is 1-1, then (8.12) has exactly one solution. The question is what to do in the contrary case.
One proposal is to get the best least-squares solution, i.e., the solution of minimal norm. The svd for A
makes it easy to find this particular solution.

If A = V ΣW c is a svd for A, then V is an o.n. basis for ranA, hence

b̂ = Pran Ab = V V cb.

Therefore, (8.12) is equivalent to the equation

V ΣW c? = V V cb.

Since V is o.n., hence 1-1, and Σ is invertible, this equation is, in turn, equivalent to

W c? = Σ−1V cb,
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hence to

(8.13) WW c? = WΣ−1V cb.

Since W is also o.n., WW c = PW is an o.n. projector, hence, by (6.14)Proposition, strictly reduces norms
unless it is applied to something in its range. Since the right-hand side of (8.13) is in ranW , it follows that
the solution of smallest norm of (8.13), i.e., the best least-squares solution of A? = y, is that right-hand side,
i.e., the vector

x̂ := A+y,

with the matrix
A+ := WΣ−1V c

the Moore-Penrose pseudo-inverse of A.
Note that

A+A = WΣ−1V cV ΣW c = WW c,

hence A+ is a left inverse for A in case W is square, i.e., in case rankA = #A. Similarly,

AA+ = V ΣW cWΣ−1V c = V V c,

hence A+ is a right inverse for A in case V is square, i.e., in case rankA = #Ac. In any case,

A+A = Pran Ac , AA+ = Pran A,

therefore, in particular,
AA+A = A.

2-norm and 2-condition of a matrix

Recall from (6.23) that o.n. matrices are 2-norm-preserving, i.e.,

‖x‖2 = ‖Ux‖2, ∀x ∈ IFn, o.n. U ∈ IFm×n.

This implies that

‖TB‖2 = ‖B‖2 = ‖BU c‖2, ∀ o.n. T ∈ IFr×m, B ∈ IFm×n, o.n. U ∈ IFr×n.

Indeed,

‖TB‖2 = max
x 6=0

‖TBx‖2
‖x‖2 = max

x 6=0

‖Bx‖2
‖x‖2 = ‖B‖2.

By (7.21), this implies that also

‖BU c‖2 = ‖UBc‖2 = ‖Bc‖2 = ‖B‖2.

It follows that, with A = V ΣW c ∈ IFm×n a svd for A,

(8.14) ‖A‖2 = ‖Σ‖2 = σ1,

the last equality because of the fact that Σ = diag(σ1, . . . , σr) with σ1 ≥ σ2 ≥ · · · ≥ 0.
Assume that, in addition, A is invertible, therefore r = rankA = n = m, making also V and W square,

hence A+ is both a left and a right inverse for A, therefore necessarily A−1 = A+ = V Σ−1W c. It follows
that ‖A−1‖2 = 1/σn. Hence, the 2-condition of A ∈ IFn×n is

κ2(A) = ‖A‖2‖A−1‖2 = σ1/σn,

and this is how this condition number is frequently defined.

19aug02 c©2002 Carl de Boor



90 8. Factorization and rank

The effective rank of a noisy matrix

The problem to be addressed here is the following. If we construct a matrix in the computer, we have to
deal with the fact that the entries of the constructed matrix are not quite exact; rounding errors during the
calculations may have added some noise. This is even true for a matrix merely entered into the computer, in
case some of its entries cannot be represented exactly by the floating point arithmetic used (as is the case,
e.g., for the number .1 or the number 1/3 in any of the standard binary-based floatingpoint arithmetics).

This makes it impossible to use, e.g., the rref algorithm to determine the rank of the underlying matrix.
However, if one has some notion of the size of the noise involved, then one can use the svd to determine a
sharp lower bound on the rank of the underlying matrix, because of the following.

(8.15) Proposition: If A = V ΣW c is a svd for A and rank(A) > k, then min{‖A−B‖2 : rank(B) ≤
k} = σk+1 = ‖A−Ak‖2, with

Ak :=
k∑

j=1

vjσjwj
c.

Proof: If B ∈ IFm×n with rank(B) ≤ k, then dimnull(B) > n− (k + 1) = dim IFn − dim ranWk+1,
with

Wk+1 := [w1, w2, . . . , wk+1].

Therefore, by (4.21)Corollary, the intersection null(B) ∩ ranWk+1 contains a vector z of norm 1. Then
Bz = 0, and W cz = Wk+1

cz, and ‖Wk+1
cz‖2 = ‖z‖2 = 1. Therefore, Az = V ΣW cz = Vk+1Σk+1Wk+1

cz,
hence

‖A−B‖2 ≥ ‖Az −Bz‖2 = ‖Az‖2 = ‖Σk+1Wk+1
cz‖2 ≥ σk+1‖Wk+1

cz‖2 = σk+1.

On the other hand, for the specific choice B = Ak, we get ‖A − Ak‖2 = σk+1 by (8.14), since A − Ak =∑
j>k vjσjwj

c is a svd for it, hence its largest singular value is σk+1.

In particular, if we have in hand a svd

A + E = V diag(σ̂1, σ̂2, . . . , σ̂r̂)W c

for the perturbed matrix A + E, and know (or believe) that ‖E‖2 ≤ ε, then the best we can say about the
rank of A is that it must be at least

rε := max{j : σ̂j > ε}.

For example, the matrix

A =


 2/3 1 1/3

4/3 2 2/3
1 1 1




is readily transformed by elimination into the matrix

B =


 0 1/3 −1/3

0 0 0
1 1 1


 ,

hence has rank 2. However, on entering A into a computer correct to four decimal places after the decimal
point, we get (more or less) the matrix

Ac =


 .6667 1 .3333

1.3333 2 .6667
1 1 1


 ,
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and for it, MATLAB correctly returns id3 as its rref. However, the singular values of Ac, as returned by svd,
are

(3.2340..., 0.5645..., 0.000054...)

indicating that there is a rank-2 matrix B with ‖Ac −B‖2 < .000055. Since entries of Ac are only accurate
to within 0.00005, the safe conclusion is that A has rank ≥ 2; it happens to have rank 2 in this particular
example.

The polar decomposition

The svd can also be very helpful in establishing results of a more theoretical flavor, as the following
discussion is intended to illustrate.

This discussion concerns a useful extension to square matrices of the polar form (see Backgrounder)

z = |z| exp(iϕ)

of a complex number z, i.e., a factorization of z into a nonnegative number |z| =
√

zz (its modulus or
absolute value) and a number whose absolute value is equal to 1, a socalled unimodular number.

There is, for any A ∈ Cn×n, a corresponding decomposition

(8.16) A =
√

AAcE,

called a polar decomposition, with
√

AAc ‘nonnegative’ in the sense that it is hermitian and positive
semidefinite, and E ‘unimodular’ in the sense that it is unitary, hence norm-preserving, i.e., an isometry.

The polar decomposition is almost immediate, given that we already have a SVD A = Ṽ Σ̃W̃ c for A (see
(8.11)) in hand. Indeed, from that,

A = Ṽ Σ̃Ṽ c Ṽ W̃ c,

with P := Ṽ Σ̃Ṽ c evidently hermitian, and also positive semidefinite since

〈Px, x〉 = xcṼ Σ̃Ṽ cx =
∑

j

σ̃j |(Ṽ cx)j |2

is nonnegative for all x, given that σ̃j ≥ 0 for all j; and

P 2 = Ṽ Σ̃Ṽ cṼ Σ̃Ṽ c = Ṽ Σ̃Σ̃cṼ c = Ṽ Σ̃W̃ cW̃ Σ̃cṼ c = AAc;

and, finally, E := Ṽ W̃ c unitary as the product of unitary maps.

Equivalence and similarity

The SVD provides a particularly useful example of equivalence. The linear maps A and Â are called
equivalent if there are invertible linear maps V and W so that

A = V ÂW−1.

Since both V and W are invertible, such equivalent linear maps share all essential properties, such as their
rank, being 1-1, or onto, or invertible.

Equivalence is particularly useful when the domains of V and W are coordinate spaces, i.e., when V
and W are bases, and, correspondingly, Â is a matrix, as in the following diagram:

A
X −→ Y

↑ ↑W V

IFn IFm−→
Â
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In this situation, Â = V −1AW is called a matrix representation for A.
For example, we noted earlier that the matrix

D̂k :=




0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · k




is the standard matrix representation used in Calculus for the linear map D : Πk → Πk−1 of differentiation
of polynomials of degree ≤ k.

In practice, one looks, for given A ∈ L(X, Y ), for matrix representations Â that are as simple as possible.
If that means a matrix with as many zero entries as possible and, moreover, all the nonzero entries the same,
say equal to 1, then a simplest such matrix representation is of the form

Â = diag( idrank A, 0) =
[

idrank A 0
0 0

]
,

with 0 indicating zero matrices of the appropriate size to make Â of size dim tarA × dimdomA. It can
be obtained from any minimal factorization A = Ṽ Λt by extending Ṽ to a basis V = [Ṽ , V1] of tarA and
extending Λt to the inverse W−1 of a basis W for domA.

The situation becomes much more interesting and challenging when dom A = tarA and, correspondingly,
we insist that also V = W . Linear maps A and Â for which there exists an invertible linear map V with

A = V ÂV −1

are called similar. Such similarity will drive much of the rest of these notes.
8.10 T/F

() If A, B, M are matrices such that rank AM = rank B, then M is invertible.

() If M is invertible and AM = B, then rank AM = rank B.

() If M is invertible and MA = B, then rank MA = rank B.
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