Euclid’s Algorithm

Horner’s method is a special case of Euclid’s Algorithm which constructs, for given polynomials \(p \) and \(h \neq 0 \), (unique) polynomials \(q \) and \(r \) with \(\deg r < \deg h \) so that

\[
p = hq + r.
\]

For variety, here is a nonstandard discussion of this algorithm, in terms of elimination.

Assume that

\[
h(t) = a_0 + a_1 t + \cdots + a_d t^d, \quad a_d \neq 0,
\]

and

\[
p(t) = b_0 + b_1 t + \cdots + b_n t^n.
\]

Then we seek a polynomial

\[
q(t) = c_0 + c_1 t + \cdots + c_{n-d} t^{n-d}
\]

for which

\[
r := p - hq
\]

has degree \(< d \). This amounts to the square upper triangular linear system

\[
\begin{align*}
a_d c_0 + a_{d-1} c_1 + \cdots + a_0 c_d &= b_d \\
a_d c_1 + a_{d-1} c_2 + \cdots + a_0 c_{d+1} &= b_{d+1} \\
& \quad \vdots \\
a_d c_{n-d-1} + a_{d-1} c_{n-d} &= b_{n-1} \\
a_d c_{n-d} &= b_n
\end{align*}
\]

for the unknown coefficients \(c_0, \ldots, c_{n-d} \) which can be uniquely solved by back substitution since its diagonal entries all equal \(a_d \neq 0 \).
Rough index for these notes

1-1: -5, 2, 8, 40
1-norm: 79
2-norm: 79
A-invariance: 125
A-invariant: 113
absolute value: 167
absolutely homogeneous: 70, 79
additive: 20
adjugate: 164
affine: 151
affine combination: 148, 150
affine hull: 150
affine map: 149
affine polynomial: 152
affine space: 149
affinely independent: 151
agrees with y at A^I: 59
algebraic dual: 95
algebraic multiplicity: 130, 133
alternating: 130, 137, 161
angle: 72
angle-preserving: 72
annihilating for A ∈ L(X): 132
annihilating polynomial: -8
annihilating polynomial for A at x: 107
argument: 167
array: 24
assignment: 1
assignment on I: 1
associative: 13, 18
augmented: 38
Axiom of Choice: 14
axis: 137
azimuth: 148
Background: -9
barycentric coordinates of p with respect to Q: 151
basic: 32
basis: -6, 43
basis for X: 43
Basis Selection Algorithm: 45
belief: 14
best least-squares solution: 88
bi-orthonormal: 94
bidual: 97
bilinear: 44
bisection: 160
boldface: -5
boring: 120
bound: -6, 32, 40, 45, 54
bound for Z: 168
bounded: 168, 168
broken lines: 19
canonical: 127
car: 94
cardinality: 1, 8
cartesian product: 2
Cauchy(-Bunyakovski-Schwarz)
 Inequality: 69
Cauchy-Binet formula: -9, 166
Cayley-Hamilton Theorem: 133
CBS Inequality: 69
Chaikin algorithm: 139
chain rule: 153
change of basis: -6
classical function: 7
characteristic function: 7
characteristic polynomial: -8, 130, 132, 134
circulant: 140
codimension: 50, 53
coefficient vector: 21
cofactor: 163
column map: -6, 23
column space: 29
column vector: 2
commutative: 18
commutative group with respect to addition: 18
commute: 121
compatible: 74
complement: 53, 93
complementary to: 36
complex: 2, 3
complex conjugate: 167
complex numbers: 1
complex plane: 167
component: 53
composition: 13
condition: 75
condition number: 75, 86, 89
congruent: 156
conjugate transpose: 3, 65
construction of a basis: 45
continuous function: 19
contour lines: 155
converge to the scalar ζ: 169
correction: -5
correction to 0: -7
covergence: -7
covergence to 0: -7
covergent: 112
covergent to 0: 112
coverges: 111, 152
covers to the n-vector z∞: 111
corex combination: 152
coordinate: 2
coordinate axis: 53
coorinate map: 56, 82
coorinate space: -6
coorinate vector for x with respect to the
 basis v_1, v_2, ..., v_n: 43
coordinates: -6
coordinates with respect to the basis: 56
cost function: 142
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courant-Fischer minimax Theorem: 158</td>
</tr>
<tr>
<td>Cramer’s rule: 162</td>
</tr>
<tr>
<td>critical point: -8, 154</td>
</tr>
<tr>
<td>cross product: 137, 138, 164</td>
</tr>
<tr>
<td>current guess: -5</td>
</tr>
<tr>
<td>cycle length: 16</td>
</tr>
<tr>
<td>D-invariant: 108</td>
</tr>
<tr>
<td>d-variate polynomials of degree $\leq k$: 47</td>
</tr>
<tr>
<td>data map: 56</td>
</tr>
<tr>
<td>defect: 50</td>
</tr>
<tr>
<td>defective: -8, 113</td>
</tr>
<tr>
<td>defective eigenvalue: 102</td>
</tr>
<tr>
<td>definite: 155</td>
</tr>
<tr>
<td>DeMorgan’s Law: 93</td>
</tr>
<tr>
<td>derivative of f at p: 152</td>
</tr>
<tr>
<td>derivative of f at p in the direction τ: 152</td>
</tr>
<tr>
<td>determinant: -9, 130</td>
</tr>
<tr>
<td>diagonalizable: -8</td>
</tr>
<tr>
<td>diagonally dominant: 128</td>
</tr>
<tr>
<td>difference: 1</td>
</tr>
<tr>
<td>differentiable at $p \in F$: 152</td>
</tr>
<tr>
<td>dimension: -6</td>
</tr>
<tr>
<td>Dimension Formula: -6, 48</td>
</tr>
<tr>
<td>dimension of X: 46</td>
</tr>
<tr>
<td>dimension of $\Pi_k(\mathbb{K}^d)$: 47</td>
</tr>
<tr>
<td>dimension of a flat: 150</td>
</tr>
<tr>
<td>direct sum: -6, 52</td>
</tr>
<tr>
<td>directed graph: 136</td>
</tr>
<tr>
<td>discretize: 55, 57</td>
</tr>
<tr>
<td>domain: -5, 1, 6</td>
</tr>
<tr>
<td>dot product: 64, 137</td>
</tr>
<tr>
<td>dual: 93, 94, 97</td>
</tr>
<tr>
<td>dual of the vector space: 94</td>
</tr>
<tr>
<td>eigenbasis: 101</td>
</tr>
<tr>
<td>eigenpair: 99</td>
</tr>
<tr>
<td>eigenstructure: -8</td>
</tr>
<tr>
<td>eigenvalue: -8, 99</td>
</tr>
<tr>
<td>eigenvector: -8, 99</td>
</tr>
<tr>
<td>elegance: -8</td>
</tr>
<tr>
<td>elementary: 26</td>
</tr>
<tr>
<td>elementary matrix: -7, 83</td>
</tr>
<tr>
<td>elementary row operation: 26</td>
</tr>
<tr>
<td>elevation: 148</td>
</tr>
<tr>
<td>elimination: -6, 32</td>
</tr>
<tr>
<td>elimination step: 32</td>
</tr>
<tr>
<td>empty assignment: 2</td>
</tr>
<tr>
<td>empty set: 1</td>
</tr>
<tr>
<td>end: 13</td>
</tr>
<tr>
<td>entry: 1</td>
</tr>
<tr>
<td>epimorph(ic): 8</td>
</tr>
<tr>
<td>equivalence: 27</td>
</tr>
<tr>
<td>equivalence relation: -8, 103</td>
</tr>
<tr>
<td>equivalent: 32, 91</td>
</tr>
<tr>
<td>equivalent equation: -7</td>
</tr>
<tr>
<td>error: 75, 98</td>
</tr>
<tr>
<td>Euclid’s Algorithm: 170</td>
</tr>
<tr>
<td>Euclidean norm: -6, 67</td>
</tr>
<tr>
<td>existence: -5, 8, 12</td>
</tr>
<tr>
<td>expansion by minors: 163</td>
</tr>
<tr>
<td>exponential: -7</td>
</tr>
<tr>
<td>extending a 1-1 column map: 45</td>
</tr>
<tr>
<td>factor: -6, 54</td>
</tr>
<tr>
<td>factor space: 50</td>
</tr>
<tr>
<td>family: 2</td>
</tr>
<tr>
<td>feasible set: 143</td>
</tr>
<tr>
<td>field-addition distributive: 18</td>
</tr>
<tr>
<td>finest A-invariant direct sum decomposition: 122</td>
</tr>
<tr>
<td>finite-dimensional: 48, 77</td>
</tr>
<tr>
<td>finitely generated: 43</td>
</tr>
<tr>
<td>flat: 149</td>
</tr>
<tr>
<td>form: 94</td>
</tr>
<tr>
<td>Fourier series: 59</td>
</tr>
<tr>
<td>free: -6, 32, 45</td>
</tr>
<tr>
<td>Frobenius norm: 74</td>
</tr>
<tr>
<td>function: 7, 18</td>
</tr>
<tr>
<td>functional: 94</td>
</tr>
<tr>
<td>Fundamental Theorem of Algebra: 105, 170</td>
</tr>
<tr>
<td>Gauss: 147</td>
</tr>
<tr>
<td>Gauss-Jordan: 147</td>
</tr>
<tr>
<td>geometric multiplicity: 133</td>
</tr>
<tr>
<td>Gershgorin Circle Theorem: 129</td>
</tr>
<tr>
<td>Gershgorin’s circles: -8</td>
</tr>
<tr>
<td>gradient: -5, 154</td>
</tr>
<tr>
<td>Gram-Schmidt: -6</td>
</tr>
<tr>
<td>Gram-Schmidt orthogonalization: 72</td>
</tr>
<tr>
<td>Gramian matrix: 57</td>
</tr>
<tr>
<td>graph: 10</td>
</tr>
<tr>
<td>half-spaces: 21</td>
</tr>
<tr>
<td>halfspace: 143</td>
</tr>
<tr>
<td>Hermite interpolation: 59</td>
</tr>
<tr>
<td>Hermitian: 65</td>
</tr>
<tr>
<td>hermitian: -8, 64, 86, 87, 120</td>
</tr>
<tr>
<td>Hessian: -8, 154</td>
</tr>
<tr>
<td>homogeneous: -6, 20, 21, 28, 32</td>
</tr>
<tr>
<td>Horner’s scheme: 169</td>
</tr>
<tr>
<td>Householder matrices: 86</td>
</tr>
<tr>
<td>Householder reflection: -7, 73</td>
</tr>
<tr>
<td>hyperplane: 143</td>
</tr>
<tr>
<td>I-assignment: 1</td>
</tr>
<tr>
<td>ith row of A: 3</td>
</tr>
<tr>
<td>(i, j)-entry: 3</td>
</tr>
<tr>
<td>ideal: 123, 133</td>
</tr>
<tr>
<td>idempotent: -6, 15, 59</td>
</tr>
<tr>
<td>identity map: 12</td>
</tr>
<tr>
<td>identity matrix: 29</td>
</tr>
<tr>
<td>identity permutation: 163</td>
</tr>
<tr>
<td>image: 7</td>
</tr>
</tbody>
</table>
image of Z under f: 6
imaginary part of z: 167
imaginary unit: 167
indefinite: 155
index set: 1
initial guess: 98
injective: 8
inner product: -6, 64
inner product space: -6, 64
inner-product preserving: 72
integers: 1
interesting eigenvalue: 103
interpolation: -6, 41, 59, 62
intersection: 1
interval with endpoints p, q: 152
inverse: -5, 18, 29
inverse of f: 12
inverse of its graph: 12
invertibility, of triangular matrix: 41
invertible: -5, 12, 40, 48
involutory: 86
irreducible: 122, 135
isometry: -6, 72, 80, 91
item: 1
iteration: -7, 98
iteration map: 98
jth column: 23
jth column of A: 3
Jordan (canonical) form: 126
Jordan block: 126
Jordan form: -8
kernel: 28
Krylov sequence: -8
Lagrange basis: 58
Lagrange fundamental polynomials: 58
least-squares: -6
least-squares solution: 69, 88
left inverse: -5, 14
left shift: 9
level lines: 155
linear: -6, 20, 130
linear combination of the v_j: 43
linear combination of the vectors v_1, v_2, ..., v_n
with weights a_1, a_2, ..., a_n: 23
linear functional: -6, 56, 94
linear constraint: 143
linear in its first argument: 64
linear inequalities, system of: 147
linear manifold: 149
linear map: -6
linear operator: 20
linear polynomial: 152
linear programming: 142
linear projector: -6
linear space: -6, 18
linear spaces of functions: -6
linear subspace: -6, 19
linear subspace, specification of: 28
linear transformation: 20
linearity: -6
linearly dependent on v_1, v_2, ..., v_n: 43
linearly independent: 43
linearly independent of v_1, v_2, ..., v_n: 43
list: 2
local minimizer: 154
lower triangular: 3
m \times n-matrix: 3
main diagonal of A: 3
map: -5, 6, 7
map composition: -5, 13
map into Y given by the assignment f: 7
map norm: -7, 76, 77
mapping: 7
matrix: 3
matrix exponential: 99
matrix polynomial: -7
matrix representation for A: 91
max-norm: 78
maximally 1-1: 46
maximin Theorem: 158
maximizer: 154
minimal: 82, 122
minimal (annihilating) polynomial for A: 123
minimal polynomial: -8
minimal polynomial for A: 133
minimal polynomial for A at x: 107
minimally onto: 46
minimization: -8
minimizer for f: 154
modulus: 91, 167
monic: -8, 107
monomial of degree j: 28
monomorph(ic): 8
Moore-Penrose pseudo-inverse: 89
morphism: 7
multilinear: 130
multiplication by a scalar: -6
multiplicity: 129
n-dimensional coordinate space \mathbb{IF}^n: 19
n-list: 2
n-vector: -5, 2
natural basis: 51
natural basis for \mathbb{IF}^n: 43
natural numbers: 1
negative (semi)definite: 155
negative labeling: 103
nested form: 170
nested multiplication: 169
neutral: 18
Newton polynomial: 42
Newton’s method: -5
nilpotent: -7, 124, 125, 132
non-defective: -8
nonbasic: 32
nonnegative: 91, 134
norm: -6
norm of a map: 77
norm, of a vector: 79
normal: -8, 120, 143
normal equation: -69
normalize: 70
normal equation: 79
nullspace: -6, 28
o.n.: -6, 71
octahedron: 5
onto: -5, 8, 40
operator: 7
optimization: 142
order: 3
orthogonal: 66, 67, 71, 73
orthogonal complement: 71
orthogonal direct sum: 68
orthonormal: -6, 71, 120
parity: 131, 162
permutation: 85
permutation matrix: -7, 81, 85, 107
permutation of order n: 9
permutation of the first n integers: 162
perpendicular: 66
Perron-Frobenius Theorem: 135
perturbations: -8
pigeonhole principle for square matrices: 40
pivot block: 166
pivot element: 35
pivot equation: 32
pivot row: 32
PLU factorization: -7
point: 149
pointwise: -6, 18, 54
polar decomposition: 91
polar form: 91, 167
polyhedron: 5
polynomials of degree \(\leq k \): 19
positive: 134
positive (semi)definite: 155
positive definite: 64, 79
positive orthant: 134
positive semidefinite: 87, 91
power method: 118
power sequence: -7, 16
power sequence of A: 112
power-bounded: 112
power-boundedness: -7
pre-dual: 97
pre-image of U under f: 6
primary decomposition for X wrto A: 124
prime factorization: 122
primitive nth root of unity: 141
principal: 133
product: 18
product of matrices: 25
product space: 54
projected problem: 88
projector: 15, 59
proper: 125
proper chain: 50
proper factor of q: 122
proper subset: 1
pseudo-inverse: 89
QR factorization: -7, 72
QR method: 109
quadratic form: -8, 154
range: -5, -6, 1
range of f: 6
rank: -7, 82
rank-one perturbation of the identity: 83
rational numbers: 1
Rayleigh quotient: -8, 157
Rayleigh’s Principle: 158
real: 2, 3
real numbers: 1
real part of \(z \): 167
really reduced: 36
really reduced row echelon form: -6
really reduced row echelon form for
\(A \in \mathbb{F}^{m \times n} \): 36
reciprocal: 167
reduced: 87
reduced row echelon form for A: 35
reducible: 135
reduction to a sum of squares: 156
refinement of the Gershgorin Circle
Theorem: 129
reflexive: 103
relation: 3
relative error: 75
relative residual: 75
represent: 96
representation: 95
representing: 43
residual: 75, 88, 144
right inverse: -5, 14
right shift: 9
right side: 21
right triangular: -7
right-handed: 137
root of unity: 141, 142
row: 56
row echelon form: -6, 34
row echelon form for A: 36
row map: -6, 56
row space: 29
row vector: 2
rrref: -6
saddle point: 155
scalar: -5, 18
scalar field: 18
scalar multiplication: 18
scalar product: -5, 64
scaled power method: 118
Schur complement: -9, 166
Schur form: -7, 120
second-order: -8
self-inverse: 86
semidefinite: 155
Sherman-Morrison Formula: 31
similar: -7
similar to each other: 103
similarities: -7
similarity: -8
simple: 133
Simplex Method: 146
simplex with vertex set Q: 152
singular: 162
singular value: 87, 88
Singular Value Decomposition: 87
Singular Value Decomposition: -7, 88
skew-homogeneous: 96
skew-symmetric: 64
slack variables: 144
slotwise: 54
smooth: -5
span of the sequence v_1, v_2, \ldots, v_n: 43
spanning for X: 43
Spectral Mapping Theorem: 132
spectral radius of A: 99
spectrum: -8, 99
square matrix: 3
stable: 112
stochastic: 98
strictly lower triangular: 86
strongly connected: 136
subadditive: 79
subset: 1
sum: 18, 52
surjective: 8
svd: 87
SVD: -7, 88
Sylvester’s determinant identity: -9, 166
Sylvester’s Law of Inertia: -8
symmetric: 103
symmetric part: 154
symmetry: 93
synthetic division: 169
target: -5, 6
Taylor series: 59
term: 1
test for invertibility: 128
thinning an onto column map: 45
Toeplitz: 142
topological dual: 95
trace: 74, 129
transformation: 7
transition matrix: 58
transitive: 103
translation: 147, 149
transpose: 3
triangle inequality: 79
triangular matrix: 41
tridiagonal: 142
trigonometric polynomial: 59
trivial map: 21
trivial space: 19, 43
truncated Fourier series: 59
two-point: 59
unimodular: 91, 142
union: 1
unique factorization domain: 122
uniqueness: -5, 8, 12
unit disk: 168
unit lower triangular: -7, 86
unit sphere: 75, 77
unitarily similar: 120
unitary: -7, 18, 73, 86, 120
upper: -7
upper triangular: -7, 3
value: 1
value of f at x: 6
Vandermonde: 73
vector: 18, 149
vector addition: -6, 18
vector norm: -7, 79
vector operations: -6
vector space: 18
vector-addition distributive: 18
vertex: 146
viewing angle: 148
Woodbury: 31
working-array: 32
Wronski matrix at x: 58