
cs 514, lecture 5apr02: recap re data maps, column maps, recovery, projectors; start on B-splines
Recall the setup so far. We are hoping to recover an element f of the ls F from information Λ′f =

(λif : i ∈ I) about it, with each λi a lfnl, hence

Λ′ : F → IFI

a linear map. We assume that Λ′ is 1-1.
In order to avoid any difficulties with identifying Λ′(F ) = ran Λ′, we only looked at the finite-dimensional

case:
Λ′f = (λi : i = 1, . . . , n),

and assumed that Λ′ is onto.
Then F is necessarily n-dimensional, hence has a basis consisting of n elements, or, equivalently, there

is a reconstruction map, or column map,

W : IFn → F : a 7→
n∑

j=1

wja(j) =: [w1, . . . , wn]a

that is invertible.
Under that assumption, the Gram matrix Λ′W = (λiwj : i, j = 1, . . . , n) is invertible, and the formula

f = W (Λ′W )−1Λ′f, ∀f ∈ F,

provides the complete reconstruction of f ∈ F from the information Λ′f about it.
We observed that this amounts to nothing more than a change of basis: Since Λ′ : F → IFn is invertible,

its inverse, V := (Λ′)−1, is a linear map, hence necessarily of the form

V : IFn → F : a 7→
n∑

j=1

vja(j) =: [v1, . . . , vn]a,

and, necessarily,
id = Λ′V = (λivj : i, j = 1, . . . , n)

the identity matrix, i.e., the two sequences (λi) and (vj) are biorthonormal and, correspondingly,

f = V Λ′f =
n∑

j=1

vjλjf, ∀f ∈ F.

In fact, necessarily
V = W (Λ′W )−1.

Hence, our reconstruction consisted of the following: obtain, from the coordinates Λ′f of f wrto the basis
V , the coordinates (Λ′W )−1Λ′f of f wrto the basis W .

Nevertheless, we counted this a success to the extent that the coordinates of f wrto the basis W , more
readily than Λ′f , provide the information about f we are after.

This led us to the basic question: What information about f ∈ F is readily obtainable from its coordi-
nates wrto a given basis W for F?

We are going to look in detail into this question for the case that F is a spline space, and the basis in
question is its B-spline basis.

But before starting that discussion, here are two more general observations, at this more abstract level,
that will be important.

1. linear projectors: Extend our setup slightly, by assuming that our linear space F is actually a
linear subspace of some linear space X. A concrete example would be

F = Π<n ⊂ C(IR) =: X.
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Correspondingly, assume that our data map, Λ′, is actually defined on all of X. For our earlier concrete
example,

Λ′f = (f(τi) : i = 1, . . . , n),

this is obviously true (provided τi ∈ IR, all i). Then we can construct

Pg := W (Λ′W )−1Λ′g

for every g ∈ X, but, while g = Pg whenever g ∈ F , this need not hold for every g ∈ X. In fact, since
necessarily Pg ∈ F (why?), it follows that

g = Pg ⇐⇒ g ∈ F.

In other words,
ranP = F, PP = P.

A linear map with the property P 2 = P is called idempotent or a projector. So, P is a linear projector
onto F .

What is the relationship between g ∈ X and Pg? Since

Λ′Pg = Λ′W (Λ′W )−1Λ′g = Λ′g,

we recognize Pg as the unique element of F that agrees with g on Λ′ and therefore call it the unique
interpolant from F to the data Λ′g. The most commonly used approximation schemes are all of this
form, with the only difference being the choice of the data map, i.e., the choice of the information to be
matched.

By considering g from a superspace for F , we cannot hope for lossless reconstruction; still, it is recon-
struction of a sort.

2. Earlier in this course, a situation more special and more general was considered. The ls F was usually
infinite-dimensional, but a Hilbert space. But, even when when F was finite-dimensional, the data map,
while 1-1, was not assumed to be onto. This provided some extra flexibility, but it is important to realize
what was lost.

If Λ′ = [λ1, . . . , λn]′ : F → IFn is not onto, then

m := dimF = dim Λ′(F ) < n.

In particular, our basis W for F now is a map from IFm rather IFn, hence, offhand, not helpful for the
reconstruction. Rather, we now must choose some column map U : IFn → F , necessarily not 1-1, so that

f = UΛ′f, ∀f ∈ F,

but it is not obvious how to do this. If U is such a map, then, certainly, the Gramian Λ′U must be the
identity on ran Λ′, but that is far from having it be the identity matrix.

In contrast, if all we know is that Λ′ is some data map to IFn and that F = ranW for some reconstruction
map W : IFn → X, then just the fact that the Gramian Λ′W , which is square, is either 1-1 or onto tells us
already that it must be invertible, and Λ′ must be onto even when restricted to F , and W must be a basis
for F , and we get the earlier reconstruction formula for all f ∈ F .

A standard sufficient condition for a square matrix to be invertible is for the matrix to be triangular
with nonzero diagonal entries.

Before tackling splines, a quick discussion of a basis V for F := Π<n that, in my experience, is a ‘good’
basis since the coordinates V −1f of f ∈ F are relatively close to standard information about f . The basis
in question is the Newton basis:

V = (vj :=
∏

j<k≤n

(· − τk) : j = 1, . . . , n),
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with τ2, . . . , τn arbitrary points.
If all the τj are 0, we get the power basis as a special case.
Evaluation of the ‘Newton form’ V a is via nested multiplication (see the notes for 3apr). Here it is,

in Matlab:

function vals = nestmult(x,tau,a)
%NESTMULT value at x of the polynomial in Newton form
% p(x) = sum_j a(j) prod_{k>j}(x-tau(k))
% with both A and TAU n-vectors (TAU(1) is ignored).
% VALS is of the same size as X, with VALS(i,j,...) containing the value of p
% at X(i,j,...).
vals = repmat(a(1),size(x));
for j=2:length(a)

vals = a(j) + (x-tau(j)).*vals;
end

The ‘rows’ λi of the corresponding analysis map [λ1, . . . , λn]′ := Λ′ := V −1 are ‘divided differences’.

B-splines defined
The traditional definition of a B-spline is in terms of the divided difference of the truncated power

function

()j
+ : x 7→ xj

+ :=
{

xj , x ≥ 0
0, otherwise.

However, since I did not take the time to introduce divided differences, I’ll introduce B-splines instead ‘out
of the blue’ via their recurrence, with the B-spline of order 1 the starting point for that recurrence.

Definition. The B-spline with knots a, b is the characteristic function of the half-open interval [a . . b),
i.e.,

B(x|a, b) := χ
[a..b)

(x) =
{

1, a ≤ x < b;
0, otherwise

.

Observations
• B(·|a, b) is piecewise constant, with a breaks a and b (and nowhere else), in case a < b; in particular, it

is positive on the interval [a . . b), and is zero elsewhere.
• B(·|a, b) is the zero function in case a ≥ b.
• B(·|a, b) is right-continuous, i.e.,

B(x|a, b) = B(x+|a, b) := lim
h↓0

B(x + h|a, b).

The choice of making the B-spline right-continuous is just that, a choice, since some choice has to be
made, and other choices would have been possible, e.g., the more symmetric choice

f(x) := (f(x−) + f(x+))/2.

The particular choice made is connected to the ppform, a standard way to represent piecewise polynomials.
If now

t := (· · · ≤ ti ≤ ti+1 ≤ · · ·)
is a given nondecreasing sequence, we associate with it the sequence

Bi = Bi,1,t := B(·|ti, ti+1), ∀i,

of first-order B-splines, and find that this sequence is a partition of unity, i.e.,
∑

i

Bi(x) = 1, inf
i

ti < x < sup
i

ti.
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Further, if ti < ti+1 for all i, then (Bi : i) provides a ‘basis’ for the space

Π<1,t

of all (right-continuous) piecewise constant functions with possible breaks at the ti’s and nowhere else. Here,
I have put ‘basis’ in quotes since I don’t exclude the possibility that the sequence t is infinite or even
bi-infinite, hence correspondingly consider the infinite or even bi-infinite sum

f =
∑

i

a(i)Bi : x 7→
∑

i

a(i)Bi(x) =
{

a(j), tj ≤ x < tj+1;
0, otherwise,

i.e., as a pointwise sum.
In practice, one usually only considers finite sequences t, but it is convenient to permit t to be nonfinite.

In fact, in your consideration of B-splines so far, the sequence t was always bi-infinite, namely the sequence
t = ZZ.

Definition. With t continuing to denote a nondecreasing sequence,

Bi := Bi,2 := Bi,2,t := B(·|ti, ti+1, ti+2)x 7→



x−ti

ti+1−ti
, ti ≤ x < ti+1

ti+2−x
ti+2−ti+1

, ti+1 ≤ x < ti+2

0, otherwise,

is the B-spline with knots ti, ti+1, ti+2.

Observations
• Bi,2 = B(·|ti, ti+1, ti+2) is piecewise linear, with breaks at ti, ti+1, ti+2; it is positive on (ti . . ti+2) and

is zero off [ti . . ti+2].
• Bi,2 is continuous from the right and is continuous at any of its breaks if and only if that break appears

only once the the sequence t.
It is still true that ∑

i

Bi,2(x) = 1, inf
i

ti < x < sup
i

ti,

except for some possible trouble near the first or last ti, if there is one. It is a little bit harder, though, to
describe precisely the span of (Bi,2 : i).

Now the following observation: With ωi,2 the linear polynomial

ωi,2 : x 7→ x − ti
ti+1 − ti

, ∀i,

we have
Bi,2 = ωi,2Bi,1 + (1 − ωi+1,2)Bi+1,1.

Thus B2,i fits the following recursive definition of the B-spline.

Definition. With t a nondecreasing sequence and k a positive integer, the B-spline with knots ti, . . . , ti+k

is

B(·|ti, . . . , ti+k) := Bi,k := Bi,k,t :=
{

χ
[ti...ti+1)

, k = 1;

ωi,kBi,k−1 + (1 − ωi+1,k)Bi+1,k−1, k > 1,

where ωi,k is the linear polynomial

ωi,k : x 7→ x − ti
ti+k−1 − ti

.

Use the MATLAB Spline Toolbox command bspligui to become more familiar with just how Bi,k,t

depends on its k + 1 knots.
Also, marvel at the fact that the recurrence relation takes two functions of a certain smoothness,

multiplies each of them by some linear polynomial, and then adds the resulting products and, in this way,
obtains a function with higher smoothness than either summand.

The reference on B-splines and such that I favor (naturally) is my book A practical guide to splines,
Revised edition, Springer-Verlag, 2001. A (picturesque but proofless) overview is provided in the article
posted on my cs514 webpage.
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