cs 514, lecture 8apr02: information about f from its B-spline coefficients

f = Z aijk.
J

Let

If £ > 1, then, from the recurrence relations,
f =Y ajwiBjr1+ (1 —wis16)Bjt1x1)

J
= (qjwin+aj1(1—wjr)) Bjst.
J

Hence, with

as, 1= O,
[s (= t)al’ + (tjxi = )al

a[_iJFl] — i
T %
a; Wi k—it+1 aj_l(l wj,krfiJrl) = Tihi — &

J

ks

L
~.
vV
=

we get
f = ZCLEL]B]"]C_H_M i=1:k.
J

In particular,

f = Z ag-k]BjJ,
J

] 5 polynomial of degree < k, i.e., a polynomial of order k,

with each a j

aj S H<k.

Consider some specific sequences a = (a; : 7).

1. a = 6;, i.e.,, f = Bji. Then, by induction, ag-l], . 7“%1'71 are the only nonzero entries in al’l. In
particular, Bjj, has its support in the interval [¢; .. ¢t;4x).
[i]

;=1 for all j, therefore

> Bi=)» Bjp=1,
J J

2. a; =1, all . Then also a

showing that (Bjj : j) forms a (positive and local) partition of unity.
3. This example (actually not done in class) is the prettiest:

aj=(tjp1—7) - (tjrr-1—7) = P(r), Vi,

with 7 arbitrary. Then

= i (Twje + i1k ()1 — wir)
=i -1(7) ((tj1r-1 — Twjre + (¢ — 7)(1 — wji))
=Y p—1(7)(- — 7).

In other words,

Z‘/’jk(T)Bjk =(-7) Z%,k—l(T)By‘,k—l =-=(-7)k! Z¢j,1(T)Bj,1 =(-7k"
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This is Marsden’s identity:

(—mFt= Z%k(T)Bjk-

From this, one gets a formula for writing any p € Il as a weighted sum of the B, as follows:

(1) p=Y NpBjr,  Vpelly,
J
with
k _D)V—le .
(2) hik i3 %Dk 1)

Take in the fact that this holds for an arbitrary 7. (In fact, it is easy to verify that, for any f € g, Ajif
is independent of T).
As a quick check, take for p a constant polynomial. Then all derivatives of p are zero everywhere, hence

—DYr=Yh (T
Ajkp = (=D)" 9xlr) D()k_zl/);!k( )P(T)7

and this equals p(7) since 1;(7) = (=7)*~1 + Lo.t., hence (—D)*~ 14, = (k — 1)!. We conclude that

Ajkp = p(T), p € Ig.

A more interesting case occurs when p is a linear polynomial, say p = £ € IT;. Now D’p(7) = 0 for any
i > 1. Therefore,
(=D)*24ju(7)

Al = 0(7) + ]

De(T).
Now, since 9, is a polynomial of exact degree k — 1, its (k — 2)nd derivative is a polynomial of exact degree
1, hence has exactly one zero. This zero turns out to be the point

ik =t + - +tee-1)/ (k= 1).
In other words
Nl = L(t5y.), Ve e 11,
hence, by (1),

(3) 0= "Ut;,)Bj,  VLeTL.
J

It turns out that the formula (1) holds not just for p € I, but for every p =3 ; a;Bji with arbitrary
coefficient sequence (a; : j), provided only that the 7 appearing in the definition (2) of the linear functional
Aji be, more precisely, some point 7; in the support of Bji, i.e., from the interval (¢; ..t;1r). With that
choice, we have

NikBjr = iz, Vi, j.

For this reason, the \;; are called the dual functionals (for the corresponding B-spline sequence).
In particular, assuming that Bjk # 0, i.e., t; < tj4, for all j, (Bjx : j) is linearly independent, hence a
basis for its span,
$i.t :=span(Bj k¢ : j).

It is for this reason that their creator, I. J. Schoenberg, gave them the letter ‘B’, as an acronym for ‘Basis’
or ‘basic’.
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81+ comprises the splines of order k£ with knot sequence t. Its elements are piecewise polynomial,
of order k with breaks at the ¢;, meaning that, on each interval (¢; .. t;+1), each f € $x+ is (or, agrees
with) some polynomial of degree < k. In addition, each such f satisfies at least k —#t; smoothness conditions
across the breakpoint t;, with

#ti = #{j  t; = t:}

the multiplicity of ¢; in the knot sequence t. These two properties characterize the space $j ¢.

For example, earlier in the course, you considered Bs := By * By x By = Bj * By, and know that Bj is
piecewise polynomial of order 3 with breaks at 0,1,2,3 and in C'. Hence, it is an element of $5 7, therefore
writeable as

Bs = (\jsBs) B(-|j,j+1,j+2,j+3).
J
Now, for j # 0, we can choose 7; € (j .. j + 3) to lie outside the interval [0 .. 3], hence get \;3B3 = 0 for
j # 0. What about j = 0?7 Well, we know that Ba(z) =z on [0.. 1], hence

x x
Bu@) = [ B - By = [ By = [ yay—s?>
r—1 0
for 0 < z < 1. But, with 79 = 0™, we compute

Ao3Bs = 103(0)/2! = (1 -0)(2-0)/2=1.

Hence,
Bs = By sz = B(-|0,1,2,3).

Next: What information about f = Zj a;Bj, is ‘easily’ obtained from its B-spline coefficients (a; : j)?

1. evaluation: . To compute f(x), (i) determine j such that ¢; < & < tj41, then use the recurrence
to compute ag-k] (x) from a;_g41,...,a; via ag-zlkﬂ(x), ceey aE-Z] (x), i = 2:k — 1. Explicitly, it means some like
this: Initialize b := (aj4+1—k,- .., a;); then

for i=2:k
for r=k:-1:1i
b(r) = ((x-t(j-k+r))*b(r) + (t(G+r-i+1)-x)*b(r-1))/...
((x-t(j-k+r)) + (t(JHr-i+1)-x) );
end

end

After this, b(k) contains the value of f at 2. Note that the index for the inner loop runs down rather than up
(why?). To be sure, a preferable implementation would compute the quantities x-t (i) and t (k+i)-x, i=1:k,
needed here outside the double loop, in which case computation of the denominator is no more costly than
in its simpler form -t (j-k+r) + t(j+r-i+1). The present form is preferable for rounding-error control.

2. Differentiation The derivative of a spline f = ; a;Bji is a spline of one order lower, and its
coeflicients are difference quotients of the coefficients of the spline itself:

B..) — aj — 4j-1 .
D@%BM) Z (it — )R —1)

To be sure, if, e.g., tj4x—1 = t;, then that quotient multiplying B; ;1 is not defined. However, in that case,
Bj —1 is the zero function, and we don’t care.

Note that, in this case, #t; > k, i.e., f itself may have a jump discontinuity across ¢;, and is not even
differentiable at ¢;. In effect, we ignore that, by taking the derivative here piecewise-polynomial style, i.e.,
for each polynomial piece separately.
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As a consequence, f:(D f)(s)ds will equal f(y) — f(x) in general only if the spline f is continuous on
the interval [z .. y], for example if #t; < k for all ¢; € (z..y).

3. Good condition aka stable basis We already saw that, for t; < « < t;41, the value f(z) =

Zz=j—k+1 a;B;i(x) is a conver combination of the k coefficients a;_p4,, ¢ = 1:k. In particular, the value
f(x) must lie between the smallest and the largest of these k coefficients. On the other hand, at least for
modest k, none of these k coefficients can be too far from the value f(x). Precisely,

|ail < Diooll Y a; Byl
i

[tig1tign—1]>

with Dy, o =& 2F73/2,
This makes (B,i) a stable basis (or Riesz basis) in the uniform norm in the sense that

(1/Drso)llalloe < 1D a;Bjkllc < llalloc-

J

But the B-spline basis has this property even locally.

4. Control polygon and refinability (aka subdivision) The close connection between the value
f(x)of f=3",a;Bj, and the ‘nearby’ coefficients (a; : Bix(z) # 0) is made visible in CAGD by considering

the curve
z— (z,f(2)) = O t5.Bjk, »_a;Bjx) =0 > _ P;Bji
J J J

(note the use of (3) here), with
P = Pief = (), 0;) € R?

called the control points, and the broken line connecting these control points, and denoted here by

Ck,tf7

called the control polygon.

This nomenclature arose in CAGD (:= Computer-Aided Geometric Design), where one considers, more
generally, spline curves, i.e., curves of the form x — ik P;Bji(x) with P; arbitrary vectors in the plane
(or even in 3-space or higher dimensions) and, correspondingly, its control polygon, i.e., the piecewise linear
curve x — . P By ().

The control polygon provides a rough outline or caricature of the spline itself. At the same time, by
the stability of the B-spline basis, for modest order k, this control polygon cannot be too far from the curve
itself. Sticking with a spline function, i.e., our scalar-valued spline f = > ; @;Bjk, one infers directly from
the dual functionals that

a; = f(tj5) + O((tjn—1 = tj+1)* 1D Fllity 1.ty -11)-

This implies that the control polygon is close to the spline itself when the mesh spacing
|t] := sup(tiy1 — ;)
K3

is sufficiently small.
E.g., try out this simple example, in which a cubic spline is generated by interpolation, then plotted,
along with its control polygon:

x = sort(rand(1,21))*4*pi; k = 4; sp = spapi(k,x,sin(x)./(.3+x));

fnplt (sp)
hold on, plot(aveknt(fnbrk(sp,’knots’),k), fnbrk(sp,’coef’) ,’k’), hold off
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What if the mesh spacing is not small? Well, we can make it smaller by refining the knot sequence.

After all, if t is a subsequence of ¢, then $k.¢ is a subset of §, o, i.e.,

tct = S CS o

hence, in that case, each f € $; ¢ is also uniquely writeable as a weighted sum of the Ejk = Bj e
(4) > ajBj=f=Y_a;Bj.
J J

E.g., continue the example:

sp = fnrfn(sp,aveknt(x,3));
hold on, plot(aveknt(fnbrk(sp,’knots’),k), fnbrk(sp,’coef’) ,’r’), hold off

The formula for the @; can be quite involved. However, we can obtain any refinement t of t in a sequence
of steps, each of which consists of adding just one knot. Hence, it is sufficient to know the formula for @; in

the special case that t is obtained from ¢ by the insertion of just one additional knot.

knot insertion. If t is obtained from t by insertion of the point s, then (4) holds with

(5) a; = Wjr(s)aj + (1 = Wjr(s))aj-1,

where
Wik () := max{0, min{1, w,x(z)}}.

This knot-insertion, or refinement, process has the following very striking geometric interpretation.

Applying it to the B-spline coefficients (t*k j) of x— 3 t% Bjk(z), we find that also

= 0k(8)t0 + (1 — Bj(8))t5_q s
hence
(6) Py = 0u(s)P; + (1 — Dj(s)) Py-1.

This says that the control polygon C' Af has all its vertices (i.e., control points) ﬁj on the control
polygon C, + f, either because it is one of the P;, or else it lies on the stralght line between P;_; and P;. In
other words, the finer control polygon interpolates the rougher one. This means that we can also Vlsuahze
the insertion process as corner cutting (draw the picture in a simple case, e.g., for k = 3; why doesn’t the
picture for k = 2 give us any insight?), and corner-cutting only smoothes things out.

By repeatedly inserting knots, we can obtain in this way a control polygon for f arbitrarily close to f
itself. But such repeated interpolation by broken lines can only decrease the number of crossings

o of the x-axis, hence f can have a zero only near a zero of Ci ¢ f;

e in a particular direction of any line parallel to the x-axis, hence f must be mononote near where Cy, ¢ f
is mononote;

e in any particular direction of any straight line, hence f must be convex (concave) near where Cy ¢ f is
convex (concave).

See the pictures on the next page.
This shape preservation explains the popularity of Schoenberg’s variation-diminishing spline op-

erator:
Vg:=>_g(t;) Bjx.
J
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Figure 7 Insertion of s = 2 into the knot sequence t = (0,0,0,0,1,3,5,5,5,5), with k = 4.

Figure 8 Three-fold insertion of the same knot provides a point on the graph of a cubic
spline.
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