
cs 514, lecture 8apr02: information about f from its B-spline coefficients
Let

f :=
∑

j

ajBjk.

If k > 1, then, from the recurrence relations,

f =
∑

j

aj(ωjkBj,k−1 + (1 − ωj+1,k)Bj+1,k−1)

=
∑

j

(ajωjk + aj−1(1 − ωj,k))Bj,k−1.

Hence, with

a
[i+1]
j :=



aj , i = 0;

a
[i]
j ωj,k−i+1 + a

[i]
j−1(1 − ωj,k−i+1) =

(· − tj)a
[i]
j + (tj+k−i − ·)a[i]

j−1
tj+k−i − tj

, i > 0,

we get
f =

∑
j

a
[i]
j Bj,k−i+1, i = 1:k.

In particular,
f =

∑
j

a
[k]
j Bj,1,

with each a[k]
j a polynomial of degree < k, i.e., a polynomial of order k,

a
[k]
j ∈ Π<k.

Consider some specific sequences a = (aj : j).
1. a = δj , i.e., f = Bjk. Then, by induction, a[i]

j , . . . , a
[i]
j+i−1 are the only nonzero entries in a[i]. In

particular, Bjk has its support in the interval [tj . . tj+k).
2. aj = 1, all j. Then also a[i]

j = 1 for all j, therefore

∑
j

Bjk =
∑

j

Bj1 = 1,

showing that (Bjk : j) forms a (positive and local) partition of unity.
3. This example (actually not done in class) is the prettiest:

aj = (tj+1 − τ ) · · · (tj+k−1 − τ ) =: ψjk(τ ), ∀j,

with τ arbitrary. Then

a
[2]
j = ψjk(τ )ωjk + ψj−1,k(τ )(1 − ωjk)

= ψj,k−1(τ ) ((tj+k−1 − τ )ωjk + (tj − τ )(1 − ωjk))
= ψj,k−1(τ )(· − τ ).

In other words,

∑
j

ψjk(τ )Bjk = (· − τ )
∑

j

ψj,k−1(τ )Bj,k−1 = · · · = (· − τ )k−1
∑

j

ψj,1(τ )Bj,1 = (· − τ )k−1.
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This is Marsden’s identity:
(· − τ )k−1 =

∑
j

ψjk(τ )Bjk.

From this, one gets a formula for writing any p ∈ Π<k as a weighted sum of the Bjk, as follows:

(1) p =
∑

j

λjkpBjk, ∀p ∈ Π<k,

with

(2) λjk : f 7→
k∑

ν=1

(−D)ν−1ψjk(τ )
(k − 1)!

Dk−νf(τ ).

Take in the fact that this holds for an arbitrary τ . (In fact, it is easy to verify that, for any f ∈ Π<k, λjkf
is independent of τ ).

As a quick check, take for p a constant polynomial. Then all derivatives of p are zero everywhere, hence

λjkp =
(−D)k−1ψjk(τ )

(k − 1)!
p(τ ),

and this equals p(τ ) since ψjk(τ ) = (−τ )k−1 + l.o.t., hence (−D)k−1ψjk = (k − 1)!. We conclude that

λjkp = p(τ ), p ∈ Π0.

A more interesting case occurs when p is a linear polynomial, say p = ` ∈ Π1. Now Dip(τ ) = 0 for any
i > 1. Therefore,

λjk` = `(τ ) +
(−D)k−2ψjk(τ )

(k − 1)!
D`(τ ).

Now, since ψjk is a polynomial of exact degree k− 1, its (k− 2)nd derivative is a polynomial of exact degree
1, hence has exactly one zero. This zero turns out to be the point

t∗jk := (tj+1 + · · · + tj+k−1)/(k − 1).

In other words
λjk` = `(t∗jk), ∀` ∈ Π1,

hence, by (1),

(3) ` =
∑

j

`(t∗jk)Bjk, ∀` ∈ Π1.

It turns out that the formula (1) holds not just for p ∈ Π<k, but for every p =
∑

j ajBjk with arbitrary
coefficient sequence (aj : j), provided only that the τ appearing in the definition (2) of the linear functional
λjk be, more precisely, some point τj in the support of Bjk, i.e., from the interval (tj . . tj+k). With that
choice, we have

λikBjk = δij , ∀i, j.
For this reason, the λik are called the dual functionals (for the corresponding B-spline sequence).

In particular, assuming that Bjk 6= 0, i.e., tj < tj+k, for all j, (Bjk : j) is linearly independent, hence a
basis for its span,

$k,t := span(Bj,k,t : j).

It is for this reason that their creator, I. J. Schoenberg, gave them the letter ‘B’, as an acronym for ‘Basis’
or ‘basic’.
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$k,t comprises the splines of order k with knot sequence t. Its elements are piecewise polynomial,
of order k with breaks at the ti, meaning that, on each interval (ti . . ti+1), each f ∈ $k,t is (or, agrees
with) some polynomial of degree < k. In addition, each such f satisfies at least k−#ti smoothness conditions
across the breakpoint ti, with

#ti := #{j : tj = ti}
the multiplicity of ti in the knot sequence t. These two properties characterize the space $k,t.

For example, earlier in the course, you considered B3 := B1 ∗ B1 ∗ B1 = B1 ∗ B2, and know that B3 is
piecewise polynomial of order 3 with breaks at 0, 1, 2, 3 and in C1. Hence, it is an element of $k,ZZ, therefore
writeable as

B3 =
∑

j

(λj3B3) B(·|j, j + 1, j + 2, j + 3).

Now, for j 6= 0, we can choose τj ∈ (j . . j + 3) to lie outside the interval [0 . . 3], hence get λj3B3 = 0 for
j 6= 0. What about j = 0? Well, we know that B2(x) = x on [0 . . 1], hence

B3(x) =
∫
B1(x− y)B2(y) dy =

∫ x

x−1

B2(y) dy =
∫ x

0

y dy = x2/2

for 0 ≤ x ≤ 1. But, with τ0 = 0+, we compute

λ03B3 = ψ03(0)/2! = (1 − 0)(2 − 0)/2 = 1.

Hence,
B3 = B0,3,ZZ = B(·|0, 1, 2, 3).

Next: What information about f =
∑

j ajBjk is ‘easily’ obtained from its B-spline coefficients (aj : j)?

1. evaluation: . To compute f(x), (i) determine j such that tj ≤ x < tj+1, then use the recurrence
to compute a[k]

j (x) from aj−k+1, . . . , aj via a[i]
j−k+i(x), . . . , a

[i]
j (x), i = 2:k − 1. Explicitly, it means some like

this: Initialize b := (aj+1−k, . . . , aj); then

for i=2:k
for r=k:-1:i

b(r) = ((x-t(j-k+r))*b(r) + (t(j+r-i+1)-x)*b(r-1))/...
((x-t(j-k+r)) + (t(j+r-i+1)-x) );

end
end

After this, b(k) contains the value of f at x. Note that the index for the inner loop runs down rather than up
(why?). To be sure, a preferable implementation would compute the quantities x-t(i) and t(k+i)-x, i=1:k,
needed here outside the double loop, in which case computation of the denominator is no more costly than
in its simpler form -t(j-k+r) + t(j+r-i+1). The present form is preferable for rounding-error control.

2. Differentiation The derivative of a spline f =
∑

j ajBjk is a spline of one order lower, and its
coefficients are difference quotients of the coefficients of the spline itself:

D
( ∑

j

ajBjk

)
=

∑
j

aj − aj−1

(tj+k−1 − tj)/(k − 1)
Bj,k−1.

To be sure, if, e.g., tj+k−1 = tj , then that quotient multiplying Bj,k−1 is not defined. However, in that case,
Bj,k−1 is the zero function, and we don’t care.

Note that, in this case, #tj ≥ k, i.e., f itself may have a jump discontinuity across tj , and is not even
differentiable at tj . In effect, we ignore that, by taking the derivative here piecewise-polynomial style, i.e.,
for each polynomial piece separately.
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As a consequence,
∫ y

x
(Df)(s) ds will equal f(y) − f(x) in general only if the spline f is continuous on

the interval [x . . y], for example if #ti < k for all ti ∈ (x . . y).

3. Good condition aka stable basis We already saw that, for tj ≤ x < tj+1, the value f(x) =∑j
i=j−k+1 aiBik(x) is a convex combination of the k coefficients aj−k+i, i = 1:k. In particular, the value

f(x) must lie between the smallest and the largest of these k coefficients. On the other hand, at least for
modest k, none of these k coefficients can be too far from the value f(x). Precisely,

|ai| ≤ Dk,∞‖
∑

j

ajBjk‖[ti+1..ti+k−1],

with Dk,∞ ≈ 2k−3/2.
This makes (Bjk) a stable basis (or Riesz basis) in the uniform norm in the sense that

(1/Dk,∞)‖a‖∞ ≤ ‖
∑

j

ajBjk‖∞ ≤ ‖a‖∞.

But the B-spline basis has this property even locally.

4. Control polygon and refinability (aka subdivision) The close connection between the value
f(x) of f =

∑
j ajBjk and the ‘nearby’ coefficients (ai : Bik(x) 6= 0) is made visible in CAGD by considering

the curve
x 7→ (x, f(x)) = (

∑
j

t∗jkBjk,
∑

j

ajBjk) =:
∑

j

PjBjk

(note the use of (3) here), with
Pj = Pj,k,tf := (t∗jk, aj) ∈ IR2

called the control points, and the broken line connecting these control points, and denoted here by

Ck,tf,

called the control polygon.
This nomenclature arose in CAGD (:= Computer-Aided Geometric Design), where one considers, more

generally, spline curves, i.e., curves of the form x 7→ ∑
jk PjBjk(x) with Pj arbitrary vectors in the plane

(or even in 3-space or higher dimensions) and, correspondingly, its control polygon, i.e., the piecewise linear
curve x 7→ ∑

j PjBjk(x).
The control polygon provides a rough outline or caricature of the spline itself. At the same time, by

the stability of the B-spline basis, for modest order k, this control polygon cannot be too far from the curve
itself. Sticking with a spline function, i.e., our scalar-valued spline f =

∑
j ajBjk, one infers directly from

the dual functionals that

aj = f(t∗jk) +O((tj+k−1 − tj+1)2‖D2f‖[tj+1..tj+k−1]).

This implies that the control polygon is close to the spline itself when the mesh spacing

|t| := sup
i

(ti+1 − ti)

is sufficiently small.
E.g., try out this simple example, in which a cubic spline is generated by interpolation, then plotted,

along with its control polygon:

x = sort(rand(1,21))*4*pi; k = 4; sp = spapi(k,x,sin(x)./(.3+x));
fnplt(sp)
hold on, plot(aveknt(fnbrk(sp,’knots’),k), fnbrk(sp,’coef’) ,’k’), hold off
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What if the mesh spacing is not small? Well, we can make it smaller by refining the knot sequence.
After all, if t is a subsequence of t̂, then $k,t is a subset of $

k,̂t
, i.e.,

t ⊂ t̂ =⇒ $k,t ⊂ $
k,̂t
,

hence, in that case, each f ∈ $k,t is also uniquely writeable as a weighted sum of the B̂jk := B
j,k,̂t

:

(4)
∑

j

ajBjk = f =
∑

j

âjB̂jk.

E.g., continue the example:

sp = fnrfn(sp,aveknt(x,3));
hold on, plot(aveknt(fnbrk(sp,’knots’),k), fnbrk(sp,’coef’) ,’r’), hold off

The formula for the âj can be quite involved. However, we can obtain any refinement t̂ of t in a sequence
of steps, each of which consists of adding just one knot. Hence, it is sufficient to know the formula for âj in
the special case that t̂ is obtained from t by the insertion of just one additional knot.

knot insertion. If t̂ is obtained from t by insertion of the point s, then (4) holds with

(5) âj = ω̂jk(s)aj + (1 − ω̂jk(s))aj−1,

where
ω̂jk(x) := max{0,min{1, ωjk(x)}}.

This knot-insertion, or refinement, process has the following very striking geometric interpretation.
Applying it to the B-spline coefficients (t∗jk : j) of x 7→ ∑

j t
∗
jkBjk(x), we find that also

t̂∗jk = ω̂jk(s)t∗jk + (1 − ω̂jk(s))t∗j−1,k,

hence

(6) P̂j = ω̂jk(s)Pj + (1 − ω̂jk(s))Pj−1.

This says that the control polygon C
k,̂t
f has all its vertices (i.e., control points) P̂j on the control

polygon Ck,tf , either because it is one of the Pj , or else it lies on the straight line between Pj−1 and Pj . In
other words, the finer control polygon interpolates the rougher one. This means that we can also visualize
the insertion process as corner cutting (draw the picture in a simple case, e.g., for k = 3; why doesn’t the
picture for k = 2 give us any insight?), and corner-cutting only smoothes things out.

By repeatedly inserting knots, we can obtain in this way a control polygon for f arbitrarily close to f
itself. But such repeated interpolation by broken lines can only decrease the number of crossings
• of the x-axis, hence f can have a zero only near a zero of Ck,tf ;
• in a particular direction of any line parallel to the x-axis, hence f must be mononote near where Ck,tf

is mononote;
• in any particular direction of any straight line, hence f must be convex (concave) near where Ck,tf is

convex (concave).
See the pictures on the next page.
This shape preservation explains the popularity of Schoenberg’s variation-diminishing spline op-

erator:
V g :=

∑
j

g(t∗jk)Bjk.
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Figure 7 Insertion of s = 2 into the knot sequence t = (0,0,0,0,1,3,5,5,5,5), with k = 4.

Figure 8 Three-fold insertion of the same knot provides a point on the graph of a cubic
spline.
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