
Reconstruction, or

how to recover a function from information about it

By now, you are used to the idea of the analysis operator aka data map. This is a map of the form

Λ′ : F → IFI : f 7→ (λi(f) : i ∈ I)

i.e., from functions to numerical sequences.
So far, F has been an inner-product space and, correspondingly, we have thought of the λi as elements

of F itself, i.e., λi(f) = 〈f, λi〉. Correspondingly, we have used Λ∗ to denote the corresponding data map:

Λ∗ : F → IFI : f 7→ (〈f, λi〉 : i ∈ I).

But now, I want to look at more general data maps, and using Λ′ rather than Λ∗ is meant to signal
that. Along with this, I will merely assume that F is a linear space, with the scalar field IF being either IR
or C. As a quite concrete example, you might take

F = Π := {t 7→
n∑

j=1

a(j)tj−1 : a(j) ∈ IF, n ∈ IN},

the linear space of all IF-valued polynomials on the real line. Further, I’ll take each λi to be a linear
functional on F , meaning a scalar-valued map on F that is linear. To recall, having λi be linear means
that

λi(f + αg) = λif + αλig, ∀f, g ∈ F, ∀α ∈ IF.

This is certainly true for the functionals f 7→ 〈f, λi〉 used so far. But it is also true for the following common
functionals when, e.g., F = Π (and mentioned already earlier in the course):
• the evaluation functional:

δt : f 7→ f(t);

• the derivative evaluation functional:
δtD

r : f 7→ f (r)(t);

• the weighted average functional:

f 7→
∫ t

s

w(u)f(u) du,

with w a nonnegative function with
∫ t

s
w(u) du = 1.

On the other hand, numerical information like

f 7→ ‖f‖∞ := sup
t

|f(t)|

or
f 7→ sup

a≤t≤b
f(t)

or
f 7→ #{t ∈ [a . . b] : f(t) = 0},

while possibly very useful, is not a linear functional of f , and so is excluded from the λi that describe our
data map Λ′.

With this assumption, Λ′ itself is a linear map, i.e.,

Λ′(f + αg) = Λ′f + αΛ′g, ∀f, g ∈ F, ∀α ∈ IF.

This linearity is going to be essential to what is to follow.
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Basic Question. Given Λ′f , what can one say about f?

I will deal with this question mostly in its most extreme form:

Problem 1. Given Λ′f , tell me f .

In other words, I am looking for perfect recovery of f from the numerical information Λ′f about it.
This puts certain demands on our data map Λ′.

Demand 1. Λ′ must be 1-1, i.e., f 6= g =⇒ Λ′f 6= Λ′g.

Indeed, if Λ′g = Λ′h for some g 6= h, then we have no hope of recovering g or h from Λ′g = Λ′h since
Λ′ fails to distinguish between the two. Worse than that, once this happens for some pair g, h, then we are
unable to recover any f ∈ F from its numerical information Λ′f .

For, since Λ′ is linear, we conclude that Λ′(g − h) = 0. Since, by assumption, g − h 6= 0, this says that
the kernel of Λ′ is nontrivial, meaning that

ker Λ′ := {f ∈ F : Λ′f = 0} 6= {0}.

And that is bad news since

Λ′(f + k) = Λ′f + Λ′k = Λ′f, ∀k ∈ ker Λ′, f ∈ F.

Hence, if there is some pair g 6= h mapped by Λ′ to the same numerical information, then, for every f ∈ F ,
there is g 6= f that looks the same as f as far as Λ′ can tell.

Put positively, Λ′ is 1-1 if and only if ker Λ′ is trivial, meaning that kerΛ′ = {0}, i.e., if and only if
only 0 is mapped to 0. (For sure, any linear map must map 0 to 0.)

Demand 2. We must have a description of

ran Λ′ := Λ′(F ) = {Λ′f : f ∈ F}.

For sure, someone has supplied us with what is claimed to be Λ′f = (λif : i ∈ I), but really all we hold
is a numerical sequence (a(i) : i ∈ I) ∈ IFI . E.g., suppose we are forced to round these values as we enter
them into the computer; how can we be certain that, for these slightly perturbed values ã = (ã(i) : i ∈ I),
there is some f̃ ≈ f with Λ′f̃ = ã?

Since Λ′ is a linear map, we know that ran Λ′ is a linear subspace of IFI , but we need to know more
than that.

Demand 2 may be very hard to meet in general. For example, if F = Π, then

Λ′ : F → IRIN : f 7→ (f(n) : n ∈ IN)

is certainly 1-1 (why???), but not every a ∈ IRIN is of the form (f(n) : n ∈ IN) for some polynomial f . E.g.,
the sequence (1, 0, 0, . . .) is not (why???). Yet it is offhand tricky to identify all the a that actually are of
the form (f(n) : n ∈ IN) for some polynomial f . In fact, the only situation I know where it is at all easy
to describe ran Λ′ occurs when we are dealing with a finite amount of information, i.e., with finitely many
linear functionals:

Λ′ : F → IFn : f 7→ (λif : i = 1, . . . , n),

say.
In this setting, Linear Algebra furnishes the basic formula

dimker Λ′ + dim ran Λ′ = dim F.

From Demand 1, we know that kerΛ′ = {0}, i.e., dimker Λ′ = 0. Hence we know that dim ran Λ′ = dimF .
We also know that ran Λ′ is a linear subspace of the n-dimensional linear space IFn, hence conclude that
dimF ≤ n with equality if and only if ran Λ′ = IFn.
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So, for the time being, we change Demand 2 to the following, which is not satisfied by F = Π, but might
be satisfied, e.g., when

F = Π<n := {t 7→
n∑

j=1

a(j)tj−1 : a(j) ∈ IF}.

Demand 2’. Λ′ : F → IFn and dimF = n.

Then we know that Λ′ : F → IFn is 1-1 and onto, i.e., invertible. This means that there is a (unique)
map V : IFn → F , necessarily linear, so that

(1) Λ′V = idIFn , and V Λ′ = idF .

More than that, we only have to check one of these conditions in order to know that both conditions hold.
In particular, Λ′V = idIFn implies that

V Λ′f = f, ∀f ∈ F.

In other words, we have completely solved the recovery problem.
Except, given Λ′, just how do we construct V ?
Well, what exactly does a linear map V : IFn → F from the coordinate space IFn to our linear space

F look like?
Let

ij := (δjk : k = 1, . . . , n) = ( 0, . . . , 0︸ ︷︷ ︸
j−1 terms

, 1, 0, . . .) ∈ IFn

be the jth coordinate vector in IFn. Then, for any a ∈ IFn, a =
∑

j a(j)ij . Therefore,

V a = V (a(1)v1 + · · · + a(n)vn) = a(1)V i1 + · · · + a(n)V in.

Or, with the definition
vj := V ij , j = 1, . . . , n,

we have

(2) V a = a(1)v1 + · · · + a(n)vn.

In other words, once we know vj = V ij for all j, we know V completely in the sense that we can compute
V a for any a by (2).

There is a special case of this well-known to you: Take F = IFm, i.e., also F is a coordinate space. In
that case, each vj is an m-vector, and we are used to think of V as the m × n-matrix

V = [v1, . . . , vn] =




v1(1) · · · vn(1)
... · · · ...

v1(m) · · · vn(m)




since

(3) V a =




v1(1) · · · vn(1)
... · · · ...

v1(m) · · · vn(m)







a(1)
...

a(n)


 =




v1(1)
...

v1(m)


 a(1) + · · · +




vn(1)
...

vn(m)


 a(n)

is precisely the product of the matrix V with the 1-column matrix [a].
For this reason, I will also denote the linear map V : IFn → F : a → ∑

j vja(j) by [v1, . . . , vn], even
when F is not a coordinate space, and even refer to vj as its j-th column. Such a V is called a synthesis
operator or reconstruction map, as it constructs an element of F from numerical information. I will also
call it a column map, but that term, along with the notation [v1, . . . , vn], is completely nonstandard.
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With this notation in hand, let’s now look again at the two conditions (1) that characterize the inverse
of the data map Λ′ we started with. The first one says that Λ′V = idIFn , but what exactly is Λ′V ?

If you have trouble understanding a particular map, apply it to a typical element in its domain and see
what you get:

(Λ′V )a = Λ′(V a) = Λ′(v1a(1) + · · · + vna(n))
= Λ′(v1)a(1) + · · · + Λ′(vn)a(n) = [Λ′v1, . . . ,Λ′vn]a

while
Λ′vj = (λivj : i = 1, . . . , n).

In other words,

Λ′V = (λivj) =


 λ1v1 · · · λ1vn

... · · · ...
λnv1 · · · λnvn


 .

This matrix is often called the Gramian of the two sequences (λi) and (vj). Our condition Λ′V = idIFn

says that this matrix is to be the identity matrix, i.e.,

λivj =
{

1, i = j;
0, otherwise.

In other words, the two sequences (λi) and (vj) should be bi-orthonormal.
Under this condition, we know that V Λ′ = idF . Again, we work out the details by applying V Λ′ to

some f ∈ F :
(V Λ′)f = V (Λ′f) = V (λif : i = 1, . . . , n) = v1λ1f + · · · + vnλnf,

and this we know to equal f , i.e., our recovery problem has the solution

f =
∑

j

vjλjf =
∑

j

(λjf)vj , ∀f ∈ F.

Example F = Π<n, Λ′ : f 7→ (f(τi) : i = 1, . . . , n) for some n-set {τ1, . . . , τn}. In this case, Lagrange
has provided us with the functions

(4) `j : t 7→
∏
i 6=j

t − τi

τj − τi
, j = 1, . . . , n.

Each of these is a product of n − 1 linear factors, hence in F . Also,

`j(τk) =
{

1, j = k;
0, otherwise.

In other words V := [`1, . . . , `n] maps into Π<n and satisfies:

Λ′[`1, . . . , `n] = [Λ′`1, . . . ,Λ′`n] = [i1, . . . , in] = idIFn .

Therefore

f =
n∑

j=1

f(τj)`j , ∀f ∈ Π<n.
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But, without Lagrange’s help, how would we have known to make up these `j? What exactly would we
do when F is not just Π<n?

Well, Demand 2’ included the requirement that dimF = n and this means, by definition, that F has
some basis consisting of n terms. To recall: the sequence (w1, . . . , wn) being a basis for F means that every
f ∈ F can be written in exactly one way in the form

f = a(1)w1 + · · · + a(n)wn

for some choice of a ∈ IFn. In other words, the column map

W := [w1, . . . , wn] : IFn → F : a 7→ [w1, . . . , wn]a

is 1-1 and onto, i.e., invertible. Since Λ′ is also invertible, it follows that the Gramian matrix Λ′W must also
be invertible, hence

(5) V := W (Λ′W )−1

is a well-defined linear map from IFn to F , hence a column map to F , and

Λ′V = Λ′W (Λ′W )−1 = id.

Therefore, this V must be our sought-for synthesis operator. With this,

f = Wb = w1b(1) + · · · + wnb(n), with b := (Λ′W )−1(Λ′f), ∀f ∈ F.

Example, continued For F = Π<n, the ‘natural’ basis is the power basis, i.e., the sequence
(w1, . . . , wn) with

wj := ()j−1 : t 7→ tj−1, all j.

With Λ′f = (f(τj) : j = 1, . . . , n) as before, the matrix

Λ′W = (τ j−1
i : i, j = 1, . . . , n)

is the well-known Vandermonde matrix. We recover f ∈ Π<n from (f(τj) : j = 1, . . . , n) = Λ′f as

f(t) =
n∑

j=1

b(j)tj−1, b := (Λ′W )−1(f(τj) : j = 1, . . . , n).

For a check of that perhaps mysterious equation (5), let’s take n = 2. Then

Λ′W =
[

1 τ1

1 τ2

]
, hence, e.g., by Cramer’s rule (Λ′W )−1 =

[
τ2 −τ1

−1 1

]
/(τ2 − τ1).

Therefore,

V = W (Λ′W )−1 = [()0, ()1]
[

τ2 −τ1

−1 1

]
/(τ2 − τ1)

= [(τ2 − ()1)/(τ2 − τ1), (−τ1 + ()1)/(τ2 − τ1)] = [`1, `2].
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With this, our long journey of recovery is finished, at least for the case of a finite amount of linear
information. But here is a final point to notice. Also V is an invertible column map to F , hence its columns
form a basis for F . We started off with the numerical information Λ′f . But since, by the very construction
of V ,

f =
∑

j

(λjf)vj , ∀f ∈ F,

our initial information Λ′f is nothing but the coordinates for f wrto the basis map V . From this, we ended
up writing f in terms of the basis (w1, . . . , wn). In other words, all we accomplished was a change of basis,
obtaining the coordinates for f wrto W from its coordinates wrto V . This leads me to the final question:

WHY BOTHER???
The answer has to be that there is some advantage in knowing the coordinates of f wrto W over knowing

its coordinates wrto V . This leads to the modified basic question:

Basic Question modified. What information about f ∈ F is readily available from its coordinates wrto
to a given basis for F?

To be sure, once we know the coordinates of f wrto any particular basis, we know in principle everything
about f . But the whole point of a particular representation is that it might provide certain information
particularly readily.

===================== did not cover the rest of this =================

Example 1. F = Π0, V = [v] with v = ()0 : t 7→ 1.
If we know that f = a(1)v, then a(1) = f(t) for any t, but also a(t) =

∫ s+1

s
f(t) dt for any s.

Example 2. F = Π1, V = [v1, v2] with vj := ()j−1, i.e., the power basis.
If we know that f = a(1)v1 + a(2)v2, then we know f(0) = a(1), f ′(0) = a(2), but also a(2) =

(f(s) − f(t))/(s − t) for any s 6= t. Even f(t) = a(1) + ta(2) is almost immediately available.

Example 3: the power form. F = Π<n, V = [v1, . . . , vn] with vj := ()j−1, all j, i.e., the power
basis.

If we know that
f = V a = a(1) + a(2)t + a(3)t2 + · · · + a(n)tn−1,

then we know immediately
f (j−1)(0)/(j − 1)! = a(j), j = 1, . . . , n.

We can find f(t) pretty quickly by Nested Multiplication:

f(t) = a(1) + t(a(2) + · · · + t(a(n − 2) + t( a(n − 1) + t a(n)︸︷︷︸
=:b(n)︸ ︷︷ ︸

a(n−1)+tb(n)=:b(n−1)

)

︸ ︷︷ ︸
a(n−2)+tb(n−1)=:b(n−2)

· · ·

︸ ︷︷ ︸
a(2)+tb(3)=:b(2)

))

︸ ︷︷ ︸
a(1)+tb(2)=:b(1)

.

We can find f ′ almost immediately:

f ′(t) = a(2) + 2a(3)t + · · · + (n − 1)a(n)tn−2,

and also the indefinite integral t 7→ ∫ t

0
f(s) ds is very easily obtainable. Contrast this with the next example.

Example 4: the Lagrange form. F = Π<n, V = [`1, . . . , `n] with `j , j = 1, . . . , n, the Lagrange
polynomials for the points τ1, . . . , τn as given in (4).
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If we know that

(6) f = a(1)`1 + · · · + a(n)`n,

then we know immediately
f(τj) = a(j), j = 1, . . . , n.

However, to obtain from this coordinate vector a the value of f at some point t other than t = τ1, . . . , τn is
a bit more involved. E.g., if we let

ω(t) := (t − τ1) · · · (t − τn),

then
`j(t) =

ω(t)
(t − τj)ω′(τj)

,

with ω′(τj) a convenient short-hand for
∏

i 6=j(τi − τj), therefore

f(t) = ω(t)
n∑

j=1

a(j)
(t − τj)ω′(τj)

.

For this, it seems more efficient to have in hand the coordinate vector

b := (a(j)/ω′(τj) : j = 1, . . . , n),

corresponding to the basis [
∏

i 6=j(t − τi) : j = 1, . . . , n], but then it is a bit more work to extract f(τi) from
that coordinate vector b.

Things get worse if we are interested in f ′. Straightforward termwise differentiation of (6) leads to
n(n − 1) terms. And what about obtaining the indefinite integral t 7→ ∫ t

0
f(s) ds?

By comparing the Lagrange form with the power form, we begin to appreciate that there can be a real
gain in something as basic as a change of basis. It also illustrates the importance of the Basic Question
modified.

Actually, there is a subtle difference between the Basic Question and the Basic Question modified. The
former starts off with some data map Λ′ and asks what information about f ∈ F is (readily) obtainable from
Λ′f . The latter starts off with some basis W for F and wonders about information about f ∈ F obtainable
from its coordinates wrto W . For this to make sense, we must have available these coordinates or, at least,
have a way to obtain these coordinates for any given f ∈ F .

But that is a problem we have already solved. After all, in order to deal with f computationally, we
must have some unambiguous description for f available. The easiest such description to work with is Λ′f
for some data map that is 1-1 on F . Getting from this the coordinates of f wrto the given basis W is just a
change of basis. In particular, if Λ′ maps F onto IFn, then it must be invertible and, as we saw before,

f = W (Λ′W )−1Λ′f,

i.e., the coordinates of f ∈ F wrto W are provided by the n-vector a := (Λ′W )−1Λ′f , i.e., by the solution
to the linear system

Λ′W? = Λ′f.

This indicates the following very nice pay-off of this entire discussion.
Suppose that F is some linear subspace of some linear space X and that our data map Λ′ is defined on

all of X. Then, for arbitrary g ∈ X,
Pg := W (Λ′W )−1Λ′g

is the unique element in f that agrees with g ‘at’ Λ′, i.e., for which Λ′f = Λ′g. We call this Pg the
interpolant from F to g wrto the data (map) Λ′.
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