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III. Normed linear spaces

** definition **

(X, ‖ · ‖) is a normed linear space ( =:nls) := X is a ls and ‖ · ‖ is a norm on X ,
i.e., ‖ · ‖ : X → R and satisfies

‖x‖ ≥ 0, with equality iff x = 0 (positive definite)
‖αx‖ = |α|‖x‖ (absolute homogeneous)

‖x + y‖ ≤ ‖x‖ + ‖y‖ (subadditive)

The last inequality is the triangle inequality. Examples are provided by the earlier
samples ℓp(m) := (Rm, ‖ · ‖p), (C([a . . b]), ‖ · ‖p) and C([a . . b]) :=

(
C([a . . b]), ‖ · ‖∞

)
, but

many more will follow.
Any nls is a ts, in particular a ms, with the norm metric given by

d(x, y) := d‖‖(x, y) := ‖x − y‖.

The norm is continuous (in fact Lipschitz continuous with constant 1 ) with respect to
this metric, as can be seen by substituting x − y for x in the triangle inequality, getting
‖x‖ − ‖y‖ ≤ ‖x − y‖, hence, by symmetry,

| ‖x‖ − ‖y‖ | ≤ ‖x − y‖.

H.P.(1) A seminorm ‖·‖ only lacks definiteness to be a norm, i.e., it has all the attributes of a norm except
that ‖x‖ may be 0 without x being 0. Assuming (X, ‖ · ‖) to be a seminormed ls, prove:

(i) Y := ker ‖ · ‖ = {x ∈ X : ‖x‖ = 0} is a lss.
(ii) X/Y = {〈x〉 := x + Y : x ∈ X} is a nls with the induced norm ‖〈x〉‖ := ‖x‖.

In other words, a seminormed ls can always be considered a nls if one is prepared to consider x and y to
be the same in case their difference has (semi)norm 0.

H.P.(2) Verify that ‖f‖ := lim sup
n→∞ f(n) − lim infn→∞ f(n) is a seminorm on the ls m := b(N) of all

bounded sequences. Conclude that c := collection of all convergent sequences is a lss of m. Can you think of a
‘natural’ lm on m whose kernel is c? (I can’t.)

** norm metric **

The most important feature of a norm metric (when compared to other metrics) is its
translation invariance:

d(x, y) = d(x + z, y + z).

This implies that the nbhdsystems for any two points are alike,

B(x) = B(0) + x,

and so allows to settle many questions by considering just neighborhoods of 0,

Br := Br(0).
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For example, if X, Y are nls’s and f ∈ L(X, Y ), then f(Br(x)) = f(Br) + f(x),
therefore

f(Br(x)) ⊆ Bs(f(x)) ⇐⇒ f(Br) + f(x) ⊆ Bs + f(x)

⇐⇒ f(Br(0)) ⊆ Bs(f(0))

(using the fact that, by additivity, 0 = f(0) ). Thus, f ∈ L(X, Y ) is continuous at x iff f
is continuous at 0. Since x is arbitrary here, this says that f ∈ L(X, Y ) is continuous at a
point iff f is continuous (everywhere).

The second most important feature of a norm metric is its scale invariance:

d(αx, αy) = |α|d(x, y).

This implies that the entire nbhdsystem B(0) = {Br : r > 0} is obtainable from just one
nbhd by scaling,

Br = rB1, all r > 0.

This means that we can understand B(0) by understanding the unit ball

BX := B := B1 = B1(0).

H.P.(3) Y lss of nls X. Prove: For any x ∈ X, y ∈ Y , d(x + y, Y ) = d(x, Y ).

H.P.(4) Y lss of nls X. Prove: X → R : x 7→ d(x, Y ) is a seminorm, hence conclude that X/Y is nls wrto
〈x〉 7→ d(x, Y ) iff Y is closed. (Recall from (II.10) that Y − = {x ∈ X : d(x, Y ) = 0}.)

H.P.(5) Prove: Any linear (:= translation- and scale-invariant) metric is a norm metric.

A ls X with a metric that is only translation-invariant but not scale-invariant is called
a Fréchet space if it is also complete and if the map X ×F : (x, α) 7→ xα is continuous in
each of its two arguments separately. (It then can be shown that it is necessarily continuous
as a map from X × F to X .)

H.P.(6) Prove that the space X = C
Zn

of all complex-valued functions on the set Z
n is a Fréchet space with

respect to the topology of pointwise convergence.

It can be shown that the topology on any Fréchet space is, equivalently, that of
convergence with respect to an at most countable set of seminorms.

** boundedness and continuity **

Let X , Y be nls’s. We say that f ∈ L(X, Y ) is bounded if it carries bounded sets
to bounded sets. (Warning: This is at variance with the standard definition according
to which a map, linear or not, is bounded if its range is bounded, but what can I do?)
The scale invariance also implies that a continuous linear map is bounded: Indeed, if
U ⊆ X is bounded, then U ⊆ Br(x) for some x and r, hence U ⊆ Bs for some s (e.g.,
s = r + ‖x‖). If f is also continuous, then there exists t > 0 so that f(Bt) ⊆ B. But then,
f(U) ⊆ f(Bs) = f((s/t)Bt) = (s/t)f(Bt) ⊆ Bs/t, i.e., f(U) is bounded.

Conversely, a bounded f ∈ L(X, Y ) is continuous: If f(B) is bounded, then f(B) ⊆ Bs

for some s. But then, for any r > 0, f(Br/s) ⊆ Br, i.e., f is continuous at 0, hence
continuous.

Thus, for a lm, continuity and boundedness are one and the same:

boundedness and continuity c©2002 Carl de Boor



Basics 55

(1) Proposition. f ∈ L(X, Y ) is continuous iff f(B) is bounded.

(Aside: Since boundedness says that ∀{r > 0}∃{s > 0} f(Br) ⊆ Bs, while continuity
says that ∀{s > 0}∃{r > 0} f(Br) ⊆ Bs, the equivalence between boundedness and
continuity is a kind of saddle point.)

H.P.(7) Prove: If f ∈ L(X, Y ) maps some nonempty open set to a bounded set, then f is continuous.

We denote by
bL(X, Y )

the collection of all bounded linear maps from the nls X to the nls Y .

H.P.(8) Prove: bL(X, Y ) is a linear space (as a linear subspace of L(X, Y ) ).

(2) Proposition. bL(X, Y ) is a normed linear space, with respect to the map norm

(3)

‖f‖ : = ‖f : X → Y ‖ := sup ‖f(B)‖ := sup
x∈X

{‖f(x)‖ : ‖x‖ < 1} = sup ‖f(B−)‖ =

= sup{‖f(x)‖ : ‖x‖ = 1} = sup
x6=0

‖f(x)‖/‖x‖ = min{r : f(B) ⊆ B−
r }

defined for every f ∈ bL(X, Y ) (since f(B) is bounded for such f).

Proof: If f ∈ bL(X, Y ), then f is continuous, hence so is X → R : x 7→ ‖f(x)‖,
and therefore sup ‖f(B)‖ = sup ‖f(B−)‖ (by (II.8)Proposition). Further, for x 6= 0,
‖f(x)‖ = ‖x‖‖f(x/‖x‖)‖, hence sup ‖f(B−)‖ = sup ‖f(S)‖, with

S := SX := {x ∈ X : ‖x‖ = 1}

the unit sphere for X . But, this also says that sup ‖f(S)‖ = supx∈X\0 ‖f(x)‖/‖x‖.
Finally, for any Z ⊆ R, sup Z is the least upper bound for Z, i.e., equals min{r ∈ R :
∀{z ∈ Z} z ≤ r}, hence the equality sup ‖f(B)‖ = min{r : f(B) ⊆ B−

r } follows.
Now we verify that the map bL(X, Y ) → R+ : f 7→ ‖f‖ is a norm. First, ‖f‖ = 0

implies that ‖f(x)‖ = 0 for all x, therefore f = 0. Also, ‖(αf)(x)‖ = |α|‖f(x)‖, hence
‖αf‖ = |α|‖f‖. Finally, ‖(f + g)(x)‖ = ‖f(x) + g(x)‖ ≤ ‖f(x)‖ + ‖g(x)‖; therefore,
‖f + g‖ = supx ‖(f + g)(x)‖/‖x‖ ≤ supx (‖f(x)‖/‖x‖+ ‖g(x)‖/‖x‖) ≤ ‖f‖ + ‖g‖.

H.P.(9) Prove: The composition of bounded lm’s is bounded. More precisely,

(4) ∀{f ∈ bL(X, Y ), g ∈ bL(Y, Z)} ‖gf‖ ≤ ‖g‖‖f‖.

** bounded below **

The map A ∈ L(X, Y ) is bounded in case, for some finite M and all x ∈ X , ‖Ax‖ ≤
M‖x‖, in which case M is a bound for A. We call A ∈ L(X, Y ) bounded below in
case, for some positive m and all x ∈ X , ‖Ax‖ ≥ m‖x‖, in which case m is a lower bound
for A. Just as A is bounded precisely when ‖A‖ = supx∈X ‖Ax‖/‖x‖ is finite, so A is
bounded below precisely when infx∈X ‖Ax‖/‖x‖ is positive.
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If A is invertible, then we recognize in this infimum the reciprocal of the supremum
that gives the norm of A−1. Indeed, assuming A ∈ L(X, Y ) to be invertible,

sup
y∈Y

‖A−1y‖
‖y‖ = sup

x∈X

‖A−1Ax‖
‖Ax‖ = 1/ inf

x∈X

(
‖Ax‖/‖x‖

)
.

Therefore, an invertible lm is boundedly invertible (i.e., has a bounded inverse) iff it is
bounded below and, in that case, we get

‖Ax‖ ≥ ‖x‖/‖A−1‖,
and this bound is sharp since, for any r > 1/‖A−1‖ there is some x ∈ X with ‖Ax‖ < r‖x‖.

A lower bound provides a quantification of being 1-1, but it does not imply invertibility
since a lm may be bounded below without being onto.
H.P.(10) Prove: Any onto lm that is bounded below is open, i.e., carries open sets to open sets.

H.P.(11) Prove: If X is complete and A ∈ bL(X, Y ) is bounded below, then ran A is closed.

** any lm on a finite-dimensional domain is continuous **

An important example is provided by L(X, Y ) in case dimX < ∞.

(5) Proposition. X, Y nls’s, dimX < ∞. Then L(X, Y ) = bL(X, Y ).

Proof: The proof consists in factoring f ∈ L(X, Y ) as (fV )V −1, with V a basis
for X , and proving that the two lm’s g := fV and V −1 are continuous.

f
X −→ Y

V տ րg

F
m

(i) Any g ∈ L(Fm, Y ) is of the form g = [g1, g2, . . . , gm], hence ‖ga‖ = ‖
∑

j gja(j)‖ ≤
∑

j ‖gj‖‖a‖∞, and therefore ‖g : ℓ∞(m) → Y ‖ ≤
∑m

j=1 ‖gj‖, with each ‖gj‖ < ∞ (since it
is the norm of some element of the nls Y ), and the sum involving only finitely many such
terms. Conclusion: L(Fm, Y ) = bL(ℓ∞(m), Y ).

(ii) Since m := dim X < ∞, there exists V ∈ L(Fm, X) 1-1 and onto. By (i), V is
continuous (as a map from ℓ∞(m)), hence so is a 7→ ‖V a‖, and this function therefore
takes on its infimum on any closed and bounded set in F

m. In particular, there exists b so
that

‖b‖ = 1 and ‖V b‖ = inf ‖V (S)‖
with

S := {a ∈ F
m : ‖a‖∞ = 1}

the unit sphere (which is closed as the preimage of the closed set {1} under the continuous
map a 7→ ‖a‖∞). Since V is 1-1 and b 6= 0, we have V b 6= 0. This shows that

inf
a
‖V a‖/‖a‖∞ = inf

a
‖V (a/‖a‖∞)‖ = inf ‖V (S)‖ = ‖V b‖ > 0,

i.e., V is bounded below. But this says that V −1 is bounded, hence continuous.
(iii) If f ∈ L(X, Y ), then f = (fV )V −1 and fV ∈ L(Fm, Y ) = bL(Fm, Y ), by (i) while

V −1 ∈ bL(X, Fm) by (ii), so f ∈ bL(X, Y ).

any lm on a finite-dimensional domain is continuous c©2002 Carl de Boor



Basics 57

It takes an infinite-dimensional nls to support an unbounded lm. Even on an infinite-
dimensional nls, it is hard to construct an unbounded lm unless the space is incomplete. A
standard example is differentiation as a map on C(1) equipped with the max-norm. There
are smooth functions of max-norm ≤ 1 but with arbitrarily large first derivative, e.g., the
functions x 7→ sin(nx) for ‘large’ n. Note that (C(1), ‖ · ‖∞) is not complete since the
uniform limit of differentiable functions need not be differentiable.

** closed & bounded = compact iff finite-dimensional **

(6) Corollary. Any two norm metrics on a finite-dimensional ls are equivalent.

Proof: If X is nls and dim X < ∞ and Y = (X, ‖ · ‖′), then, by (5)Prop., the
identity map is in bL(X, Y ) as well as in bL(Y, X). In terms of bounds, this says that, for
any two norms ‖ · ‖, ‖ · ‖′ on a finite-dimensional ls X , there exist positive constants m, M
so that

∀{x ∈ X} m‖x‖ ≤ ‖x‖′ ≤ M‖x‖.

For example, on R
m,

m−1/2‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1

and

‖x‖∞ ≤ ‖x‖2 ≤ m1/2‖x‖∞.

This is related to the fact that, on any finite-dimensional nls, bounded and closed sets
are compact, since, with V : R

m → X any 1-1 onto linear map and Y any closed and
bounded set in X , V −1(Y ) is closed and bounded in ℓ∞(m), hence compact, hence so is
Y = V (V −1(Y )).

H.P.(12) Prove: The closed unit ball of a finite-dimensional lss of a nls X is compact, hence closed (in
X), and therefore any finite-dimensional lss is closed (in X).

H.P.(13) Y, Z lss’s of nls X. Prove: Y closed & dim Z < ∞ =⇒ Y + Z closed. (Hint: Y + Z is the
inverse image of 〈〉(Z) under 〈〉 : X → X/Y .)

H.P.(14) Prove: Any finite-dimensional lss of a nls X provides ba’s to any x ∈ X.

In contrast, the unit ball in any infinite-dimensional nls fails to be totally bounded,
as follows from (9)Corollary of

(7) Riesz’ Lemma. For any nondense lss Y of a nls X , supx∈X
d(x,Y )
‖x‖

= 1.

Proof:

sup
x∈X\0

d(x, Y )

‖x‖ = sup
z∈X\Y −

sup
y∈Y

d(z − y, Y )

‖z − y‖ = sup
z∈X\Y −

d(z, Y )

infy∈Y ‖z − y‖ = sup
z∈X\Y −

d(z, Y )

d(z, Y )
= 1.

closed & bounded = compact iff finite-dimensional c©2002 Carl de Boor
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H.P.(15) Where in this proof is the fact used that Y is not dense?

Note that Riesz’ Lemma is much more than the trivial fact that d(x, Y ) ≤ ‖x‖. It is
equivalent to the following

(8) Corollary. For any proper closed lss Y of the nls X , the quotient map 〈〉 : X → X/Y
has norm 1.

(9) Corollary. If U is a finite ε-net for BX for some ε < 1, then dim X ≤ #U .

Proof: For all x ∈ X\0, x
√

ε/‖x‖ ∈ BX , hence there exists u ∈ U so that
‖x√ε/‖x‖ − u‖ < ε. This implies that d(x, ran[U ])/‖x‖ <

√
ε < 1, hence, by (7)Lemma,

ran[U ] is dense in X . Since ran[U ] is closed by H.P.(12), X = ran[U ].

H.P.(16) Prove: The unit ball in any infinite-dimensional nls fails to be totally bounded.

H.P.(17) Use the same kind of argument as in the proof of Riesz’ Lemma to prove:

∀{A ∈ bL(X, Y )\0} ‖A‖ = sup ‖Ax‖/d(x, ker A).

Conclude that the factor map A| : X/ ker A → Y : 〈x〉 7→ Ax has the same norm as A.

Here is another way of stating Riesz’ Lemma. Let Y be a lss of the nls X . Then
d(αx, Y ) = |α|d(x, Y ), hence supx∈Br

d(x, Y ) = supx∈B1
d(rx, Y ) = r supx∈B1

d(x, Y ),
while, by (II.8)Proposition and the continuity of x 7→ d(x, Y ),

sup
‖x‖<1

d(x, Y ) = sup
‖x‖≤1

d(x, Y ) = sup
‖x‖=1

d(x, Y ) = sup
x

d(x/‖x‖, Y ) = sup
x

d(x, Y )/‖x‖.

Thus Riesz’ Lemma states that supx∈Br

d(x, Y ) = r in case Y is a nondense lss. In other
words: If Br ⊆ Bs(Y ) for some proper closed lss Y , then r ≤ s. More generally, we have
the following.

(10) Corollary. Br(x) ⊆ Bs(Y ) for some proper closed lss Y =⇒ r ≤ s.

Proof: Br ⊆
(
Br(x) + Br(−x)

)
/2 ⊆

(
Bs(Y ) − Bs(Y )

)
/2 ⊆ Bs(Y ), hence r ≤ s.

(Here we have used the facts that, since Y is a lss, Bs(Y ) = −Bs(Y ) and B2s(Y )/2 =
Bs(Y ), while, for any set M , Bt(−M) = −Bt(M). Also, since d(·, Y ) is a seminorm, we
have Bt(Y ) + Bu(Y ) ⊂ Bt+u(Y ).)

This is as convenient a place as any to prove the following proposition of use later.

(11) Proposition. If X is a complete nls and Y a closed lss, then X/Y is complete (with
respect to its ‘natural’ norm ‖〈x〉‖ := d(x, Y )).

Proof: By H.P.(4), X/Y is a nls with respect to the factor norm 〈x〉 7→ d(x, Y ),
and the factor map x 7→ 〈x〉 is continuous (in fact, it has norm 1 if Y is a proper lss,
by (8)). To show that X/Y is complete, it is, by H.P.(II.27), sufficient to prove that any
Cauchy sequence in X/Y has limit points. For this, let (〈xn〉) be a Cauchy sequence.
Then limn→∞ diam{〈xj〉 : j ≥ n} = 0, hence there exists a strictly increasing µ : N → N

so that diam{〈xj〉 : j ≥ µ(n)} < 2−n, all n. This implies the existence of (yn) in Y so
that ‖xµ(n+1) − xµ(n) − yn‖ < 2−n. Therefore, with zn := xµ(n) −

∑

j<n yj , all n, we have

‖zn+1 − zn‖ < 2−n, hence diam(z≥n) <
∑

j≥n 2−j = 21−n, showing that (zn) is Cauchy,
hence has a limit, z say, since X is complete. But then 〈z〉 = limn〈zn〉 = limn〈xµ(n)〉.

closed & bounded = compact iff finite-dimensional c©2002 Carl de Boor
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** computing the norm of a lm **

The norm ‖A‖ of A ∈ bL(X, Y ) is the smallest M so that ‖Ax‖ ≤ M‖x‖, all x ∈ X .
Determination of ‖A‖ involves two steps:

(i) Show that ∀{x ∈ X} ‖Ax‖ ≤ M‖x‖. Then ‖A‖ ≤ M , i.e., M is an upper bound.

(ii) Show that no M ′ < M will do. This is usually done by examining closely the string
of inequalities used in the proof that M is an upper bound, with the aim of showing that
every one of these inequalities is sharp, i.e., can be made arbitrarily close to an equality by
an appropriate choice of x. This step is easiest if one can find x ∈ X\0 s.t. ‖Ax‖ = M‖x‖,
since this implies that ‖A‖ ≥ M , and so, in conjunction with (i), proves that A takes on
its norm at x, i.e.,

‖Ax‖ = ‖A‖‖x‖.

If dim X < ∞, then every A ∈ bL(X, Y ) takes on its norm. Indeed, x 7→ ‖Ax‖ is
continuous, hences takes on its supremum on the closed unit ball B−, since B− is compact
when dimX < ∞.

(12) Example. For A ∈ L(Fn, Fm) = F
m×n,

‖A‖1 := sup ‖Ax‖1/‖x‖1 = maxj

∑

i |A(i, j)|

‖A‖∞ := sup ‖Ax‖∞/‖x‖∞ = maxi

∑

j |A(i, j)|

‖A‖1,∞ := sup ‖Ax‖∞/‖x‖1 = maxi,j |A(i, j)|

(as you should verify!). There is no nice formula for ‖A‖p := sup ‖Ax‖p/‖x‖p for 1 < p < ∞
since in this case the unit ball in F

n has infinitely many extreme points (cf. Chapter
VI: Convexity). The next best thing is ‖A‖2 which equals the squareroot of the largest
eigenvalue of A′A.

If dim X 6< ∞, then A ∈ bL(X, Y ) need not take on its norm. Here is a simple
example.

(13) Example. For

X = ℓ1 := {x ∈ R
N : ‖x‖1 :=

∑

|x(i)| < ∞},

let

λ : X → R : x 7→
∑

i

(1 − 1/i)x(i).

Then |λx| ≤
∑

i |1 − 1/i||x(i)| ≤
∑

i |x(i)| = ‖x‖1, so ‖λ‖ ≤ 1, while ‖λ‖ = ‖λ‖‖ej‖1 ≥
|λej | = |1 − 1

j
|

j→∞
−−−−→ 1, so ‖λ‖ ≥ 1. So, ‖λ‖ = 1. But, for any i, |1 − 1/i||x(i)| = |x(i)|

iff x(i) = 0, thus |λx| = ‖λ‖‖x‖1 implies ‖x‖1 = 0.
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An Application of map norm: Approximate inverse

A ∈ bL(X, Y ), C ∈ bL(Y, X). Call C an approximate (left) inverse for A in case
‖1 − CA‖ < 1.
H.P.(18) Give an example to show that ‖1 − CA‖ < 1 does not imply that ‖1 − AC‖ < 1 even if X = Y .

With
E := 1 − CA,

an approximate inverse supplies a lower bound for A: Since CAx = x − Ex, one gets

‖C‖‖Ax‖ ≥ ‖CAx‖ ≥ ‖x‖ − ‖Ex‖ ≥ (1 − ‖E‖)‖x‖,
or

‖Ax‖ ≥ 1 − ‖E‖
‖C‖ ‖x‖.

With x the solution to the linear equation A? = y, this provides the only realistic a

posteriori way to bound the error x − x̃ in an approximate solution x̃ in terms of the
computable residual r := y − Ax̃ = A(x − x̃), viz. the bound

‖x − x̃‖ ≤ ‖C‖
1 − ‖E‖‖r‖.

More than that, it suggests that one correct the current guess x̃ for the solution x by
adding to it the computable error ‘estimate’ Cr = C(y−Ax̃) = CA(x− x̃) ∼ x− x̃. This is
at the basis of successful fixed point iteration: The equation Ax = y implies the equation

x = x + C(y − Ax) = Ex + Cy,

and, assuming X to be complete, the fact that ‖E‖ < 1 ensures convergence of the iteration

(14) xn+1 := Exn + z, n = 0, 1, 2, . . . ,

(regardless of the choice of z ∈ X) since it ensures that the iteration function g : x 7→ Ex+z
is Lipschitz continuous with Lipschitz constant κ = ‖E‖ < 1. Since x is the (unique) fixed
point of (14) iff CAx = z, it follows that the linear equation CA? = z has exactly one
solution for every z ∈ X . This means that CA is invertible. Further, (CA)−1 is bounded
since CA is bounded below: ‖CAx‖ ≥ (1 − ‖E‖)‖x‖, hence

‖(CA)−1‖ ≤ 1/(1 − ‖E‖).
Finally, since

xn = Exn−1 + z = E2xn−2 + Ez + z = · · · = Enx0 +
n−1∑

0

Ejz,

we have, with x0 = 0, that x := (CA)−1z = lim
∑

j<n Ejz. In fact, from (II.21),

‖(CA)−1z −
∑

j<n

Ejz‖ = d(x, xn) ≤ d(x1, x0)
︸ ︷︷ ︸

= ‖z‖

‖E‖n

1 − ‖E‖ ,

hence
‖(CA)−1 −

∑

j<n

Ej‖ ≤ ‖E‖n/(1 − ‖E‖).

This proves
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(15) Proposition. If A ∈ bL(X, Y ) has the approximate inverse C ∈ bL(Y, X), and X is
complete, then CA is boundedly invertible, and the inverse is representable as a Neumann
series,

(CA)−1 =

∞∑

n=0

En (with the limit taken in the norm metric),

with E := 1 − CA. Further, (CA)−1C is a (bounded) left inverse for A, and A(CA)−1 is
a (bounded) right inverse for C. Hence, if C is 1-1 or A is onto, then both A and C are
(boundedly) invertible and A−1 = (CA)−1C, C−1 = A(CA)−1.

This proposition is at the basis of most arguments for the bounded invertibility of a
linear map.

To substantiate the last claim of (15), observe that the invertibility of CA implies
that C is onto and A is 1-1. Hence, if, e.g., C is also 1-1, then it is invertible, therefore
A = C−1(CA) or A−1 = (CA)−1C, showing that A is boundedly invertible, and C−1 =
A(CA)−1 also bounded.

Remark. If dim Y ≤ dimX < ∞, then the invertibility of CA implies the invertibil-
ity of C and A, but otherwise neither C nor A need be invertible. In particular, the original
equation A? = y need not be solvable. (E.g., if A is the right shift on X = ℓ∞ := b(N),
i.e.,

Ax : j 7→
{

x(j − 1), j > 1;
0, j = 1,

,

then CA = 1 for C given by Cx : j 7→ x(j + 1), all j, but the equation A? = e1 is not
solvable.) We only conclude that the equation CA? = Cy, in fact the equation CA? = z
for arbitrary z, has a unique solution.

H.P.(19) Prove that, for a complete nls X and boundedly invertible A ∈ bL(X, Y ),

(16) d(A, {Q ∈ bL(X, Y ) : Q not boundedly invertible}) ≥ 1/‖A
−1

‖.

(Hint: Show that A−1 is an approximate inverse for any Q with ‖A − Q‖ < 1/‖A−1‖.) Conclude that {A ∈
bL(X, Y ) : A is boundedly invertible} is open.

Actually, equality must hold in (16), as can be seen by constructing an appropriate
rank-one modification of A, as in the proof of the following formal statement.

(17) Proposition. If X is complete and A ∈ bL(X, Y ) is boundedly invertible, then

d(A, {Q ∈ bL(X, Y ) : Q not boundedly invertible}) = 1/‖A−1‖.

Proof: The (bounded) rank-one linear maps from X to Y are of the form

[y]λ : X → Y : x 7→ y (λx), ∀{y ∈ Y, λ ∈ bL(X, F)},

and the norm of such a map is just the product of the norms of its constituents:

‖[y]λ‖ = sup
x∈X

‖y (λx)‖/‖x‖ = ‖y‖ sup
x

|λx|/‖x‖ = ‖y‖‖λ‖.
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Consider the rank-one modification Q := A − [y]λ of A. If λA−1y = 1, then Q(A−1y) =
(A− [y]λ)A−1y = y−y = 0, i.e., Q is not invertible. Further, ‖A−Q‖ = ‖[y]λ‖ = ‖y‖‖λ‖.
Thus

d(A, {Q ∈ bL(X, Y ) : Q not invertible}) ≤ inf{‖y‖‖λ‖ : λA−1y = 1}

= 1/ sup
λ,y

λA−1y

‖λ‖‖y‖

= 1/ sup
y

‖A−1y‖
‖y‖ = 1/‖A−1‖,

the second-last equality a consequence of the (IV.27)Hahn-Banach Theorem. H.P.(19) now
finishes the proof.

H.P.(20) Prove: If lim An = A (as elements of the nls bL(X, Y )), and A is boundedly invertible, then
lim A−1

n
= A−1, i.e., A−1

n
exists for all sufficiently large n and ‖A−1

n
− A−1‖ → 0. (Hint: Prove first the useful

identity A−1 − Q−1 = A−1(Q − A)Q−1.)
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