887 Spring 03 ANSWERS to assignment 2

(1) Let f:= ()?. By the notes, M := Iy, = Ucer—1.11M¢, with M := Iy (—1.¢ 1)
a linear space, hence provides a unique best Lo-approximation, m¢, to f, and || f||? =
| f—mc|[*+]me||*. Thus, minimizing || f —m¢|| over ¢ is the same as maximizing ||m¢|| over
¢. For —1 < ¢ < 1, the space M is two-dimensional, and the two functions m_ := X[ 1.q

L form an orthogonal basis for it. Hence m¢ = (f,m_)/(m—_,m_)m_ +
(fymy)/(my,my)my. This formula even works for ¢ = +1 if we agree that 0 times
anything is zero.

Note that, with g(¢) = (f,my)/(my,my), we have g(=C) = (f,m_)/(m_,m_)

(since this change of variable changes m, to m_, yet leaves our f unchanged). Therefore,

Imell* = g(¢)*(1 = ¢) + g(=¢)*(¢ = (-1)),

and the second term is obtained from the first term by the substitution { — —(. Hence,
maximizing ||m¢||? over ¢ is the same as maximizing the polynomial obtained from ¢ —
g(0)?(1 — ¢) by retaining only the even terms and dropping any positive common factor
const.

We compute: g(¢) = [} ()2/(1 = ¢) = (1/3)(1 = ¢*)/(1 = ¢). Hence

g(0)%(1=¢) = const(1—¢3)?/(1—¢) = const(14+¢+¢?)(1—-¢3) = const(1+¢2—¢*+ odd terms).

and m4 = x

Thus, the sought-for optimal ¢ are all the points in [—1.. 1] at which
(14 -

takes on its maximum (on that interval). By differentiation, the critical points solve the
equation 2¢ —4¢3 = 0, with ¢ = 0 obviously a local minimum, while the function takes the
same value, 1, also at the endpoints. This implies that ( = £1/ V2 are the maxima, and
there are no others. Also, g(£1/v2) = (1/3)(1 £1/v/2 4 1/2) = (3 ++/2)/6 are the two
heights of the corresponding ba’s.

(2) Since |(f — £;)(m] = |(f — fi-1)(n)| for all n # J, we have [|f — £ < 1f — f;-1]
only if |1 — f(4)] < |f(4)]- On the other hand, since lim,, f(n) = 0, we must have |f(j)| <
1/2 for all j greater than some jo, hence must have ||f — f;|| > ||f — fj—1] for all j > jo.
This shows that dist (f, M) = inf;<;, || f — f;l/, and this inf, being over a finite set, is taken
on. This shows that M is an existence set.

Also M is bounded (since all its elements are of norm < 1). However, for any f € ¢y,
we can choose j with |f(j)| < 1, and, with g := 2(f; — f;—1), we have ||f —g|| > |f(j) —2| >
1 = limsup,, ||fn — g|| since ||f, — g|| = 1 for n > j. This shows that no subsequence of
(fn) can come close to any f € ¢y (let alone any f € M).

(3) |lg — a()?|eo = max{|1 —«|,| —1 — a|} and this is uniquely minimized by « = 0.
But, for all U = {uj,us} C (=1..1), XA := w10y, + wa2dy,, L Iy must have w; + we = 0,
hence if also ||A|| = 1, need u; # ug and |wq| + |wa| = 1, but then A\g = wiuy + wauy =
+(ur —u2)/2 < 1= [[Allllgll



(4) Let V € L(IR", M) be a basis for M, and let —7 < uy < -+ < uy, < 7. Then
u(t) = (u;(t) == (1 —t)u; + tujpq : j = Llin) with u,q1 == w3 + 27 = uy depends
continuously on ¢, therefore also F : ¢ +— det Q, )V is a continuous function, with F'(1) =
det Quy...up sV = (—1)""tdet Qu, up....u,,V = (—=1)""1F(0), hence if n were even, then
F(t) = 0 for some t and, since u(t) is strictly increasing, M would not be Haar.



