(1) Let $f := ()^2$. By the notes, $M := \Pi_{0,2} = \bigcup_{\zeta \in [-1..1]} M_{\zeta}$, with $M_{\zeta} := \Pi_{0,(-1,\zeta,1)}$ a linear space, hence provides a unique best L_2 -approximation, m_{ζ} , to f, and $||f||^2 = ||f-m_{\zeta}||^2 + ||m_{\zeta}||^2$. Thus, minimizing $||f-m_{\zeta}||$ over ζ is the same as maximizing $||m_{\zeta}||$ over ζ . For $-1 < \zeta < 1$, the space M_{ζ} is two-dimensional, and the two functions $m_{-} := \chi_{[-1..\zeta]}$ and $m_{+} := \chi_{[\zeta..1]}$, form an orthogonal basis for it. Hence $m_{\zeta} = \langle f, m_{-} \rangle / \langle m_{-}, m_{-} \rangle m_{-} + \langle f, m_{+} \rangle / \langle m_{+}, m_{+} \rangle m_{+}$. This formula even works for $\zeta = \pm 1$ if we agree that 0 times anything is zero.

Note that, with $g(\zeta) := \langle f, m_+ \rangle / \langle m_+, m_+ \rangle$, we have $g(-\zeta) := \langle f, m_- \rangle / \langle m_-, m_- \rangle$ (since this change of variable changes m_+ to m_- , yet leaves our f unchanged). Therefore,

$$||m_{\zeta}||^2 = g(\zeta)^2 (1 - \zeta) + g(-\zeta)^2 (\zeta - (-1)),$$

and the second term is obtained from the first term by the substitution $\zeta \to -\zeta$. Hence, maximizing $||m_{\zeta}||^2$ over ζ is the same as maximizing the polynomial obtained from $\zeta \mapsto g(\zeta)^2(1-\zeta)$ by retaining only the even terms and dropping any positive common factor const.

We compute: $g(\zeta) = \int_{\zeta}^{1} (1-\zeta)^2 = (1/3)(1-\zeta^3)/(1-\zeta)$. Hence

$$g(\zeta)^2(1-\zeta) = \operatorname{const}(1-\zeta^3)^2/(1-\zeta) = \operatorname{const}(1+\zeta+\zeta^2)(1-\zeta^3) = \operatorname{const}(1+\zeta^2-\zeta^4+ \text{ odd terms}).$$

Thus, the sought-for optimal ζ are all the points in [-1..1] at which

$$\zeta \mapsto 1 + \zeta^2 - \zeta^4$$

takes on its maximum (on that interval). By differentiation, the critical points solve the equation $2\zeta - 4\zeta^3 = 0$, with $\zeta = 0$ obviously a local minimum, while the function takes the same value, 1, also at the endpoints. This implies that $\zeta = \pm 1/\sqrt{2}$ are the maxima, and there are no others. Also, $g(\pm 1/\sqrt{2}) = (1/3)(1 \pm 1/\sqrt{2} + 1/2) = (3 \pm \sqrt{2})/6$ are the two heights of the corresponding ba's.

(2) Since $|(f-f_j)(n)| = |(f-f_{j-1})(n)|$ for all $n \neq j$, we have $||f-f_j|| < ||f-f_{j-1}||$ only if |1-f(j)| < |f(j)|. On the other hand, since $\lim_n f(n) = 0$, we must have |f(j)| < 1/2 for all j greater than some j_0 , hence must have $||f-f_j|| \ge ||f-f_{j-1}||$ for all $j > j_0$. This shows that dist $(f, M) = \inf_{j \le j_0} ||f-f_j||$, and this inf, being over a finite set, is taken on. This shows that M is an existence set.

Also M is bounded (since all its elements are of norm ≤ 1). However, for any $f \in c_0$, we can choose j with |f(j)| < 1, and, with $g := 2(f_j - f_{j-1})$, we have $||f - g|| \geq |f(j) - 2| > 1 = \limsup_n ||f_n - g||$ since $||f_n - g|| = 1$ for $n \geq j$. This shows that no subsequence of (f_n) can come close to any $f \in c_0$ (let alone any $f \in M$).

(3) $\|g-\alpha()^0\|_{\infty} = \max\{|1-\alpha|, |-1-\alpha|\}$ and this is uniquely minimized by $\alpha = 0$. But, for all $U = \{u_1, u_2\} \subset (-1 \dots 1), \ \lambda := w_1 \delta_{u_1} + w_2 \delta_{u_2} \perp \Pi_0$ must have $w_1 + w_2 = 0$, hence if also $\|\lambda\| = 1$, need $u_1 \neq u_2$ and $|w_1| + |w_2| = 1$, but then $\lambda g = w_1 u_1 + w_2 u_2 = \pm (u_1 - u_2)/2 < 1 = \|\lambda\| \|g\|$.

(4) Let $V \in L(\mathbb{R}^n, M)$ be a basis for M, and let $-\pi \leq u_1 < \cdots < u_n < \pi$. Then $u(t) := (u_j(t) := (1-t)u_j + tu_{j+1} : j = 1:n)$ with $u_{n+1} := u_1 + 2\pi = u_1$ depends continuously on t, therefore also $F: t \mapsto \det Q_{u(t)}V$ is a continuous function, with $F(1) = \det Q_{u_2,...,u_n,u_1}V = (-1)^{n-1}\det Q_{u_1,u_2,...,u_n}V = (-1)^{n-1}F(0)$, hence if n were even, then F(t) = 0 for some t and, since u(t) is strictly increasing, M would not be Haar.