(1) Prove that, with $a := t_0 < \ldots < t_k =: b$ and for $j = 1, \ldots, k-1, D^j M(\cdot | t_0, \ldots, t_k)$ is orthogonal to $\Pi_{< j}$ with respect to the inner product

$$\langle f, g \rangle := \int_{a}^{b} f(x)g(x) dx.$$

If $p \in \Pi_{< j}$, then j-fold integration by parts gives

$$\langle D^j M, p \rangle = \sum_{i < j} \pm D^{j-i} M D^i p |_a^b = 0$$

the first equality since $D^j p = 0$ and the second since $D^i M$ vanishes at a and b for all i < k-1. In particular, this holds even for j = k-1 since $D^{k-2} M$ is continuous pp, hence absolutely continuous.

(2) Prove that the B-spline is 'bell-shaped', i.e., that, for j = 1, ..., k-1 and with $t_0 < ... < t_k, D^j M(\cdot | t_0, ..., t_k)$ has exactly j strong sign changes.

By differentiation formula, $D^jM \in \text{span}(B_{i,k-j}: i=0,\ldots,j)$, hence can have at most j strong sign changes. On the other hand, it must have at least that many since, if $x_1 < \cdots < x_r$ are all its sign changes in $[a \ldots b]$, then, with $p := \prod_{i=1}^r (\cdot -x_i)$, the product D^jM p is of one (positive or negative) sign on $[a \ldots b]$ except for the finitely many points x_i , hence $\langle D^jM, p \rangle \neq 0$, therefore $r \geq j$, by problem 1.

(3) Prove that Schoenberg's variation-diminishing spline approximation,

$$Vf := \sum_{i} B_{i,k} f(t_i^*),$$

to f has order of approximation $|\mathbf{t}|^2$ but no better. Explicitly, prove that there is a constant $C = C_k$ so that, for all $f \in C^{(2)}[a ... b]$ and for all knot sequences $\mathbf{t} = (t_1, ..., t_{n+k})$ in [a ... b] with $I_{k,\mathbf{t}} = [a ... b]$,

$$||f - Vf|| \le C_k |\mathbf{t}|^2 ||D^2 f||,$$

while, for some such f, $||f - Vf|| \neq o(|\mathbf{t}|^2)$, with $|| || := || ||_{\infty}([a .. b])$. Look it up in 'A practical guide to splines'.

(4) The **Appell** polynomials for a given linear functional μ on $C(\mathbb{R})$ with $\mu()^0 = 1$ are, by definition, the polynomials $(p_j^{\mu}: j = 0, 1, 2, ...)$ with $p_j^{\mu} \in \Pi_j$, all j, and

$$\mu D^k p_j = \delta_{kj}.$$

(i) Prove that the definite article is justified, i.e., prove that, for each such μ , there is exactly one such polynomial sequence.

- (ii) Prove that (therefore), if $\mu T = \mu$ for some $T: f \mapsto f(\alpha \cdot +\beta)$ with $\alpha \neq 0$, then $Tp_i^{\mu} = \alpha^j p_i^{\mu}$, all j.
- (iii) With $\mu = (\delta_0 + \delta_1)/2$, prove that the function $E_n : \mathbb{R} \to \mathbb{R}$, which equals p_n^{μ} on [0..1) and satisfies the functional equation

$$E(\cdot + 1) = -E,$$

is a spline of order n+1 with knot sequence $\mathbb{Z} = (\ldots, -2, -1, 0, 1, 2, \ldots)$, and is even (odd) with respect to the point 1/2 if n is even (odd).

- (i) The matrix $(\mu D^i)^j : i, j = 0, 1, 2, ...$) is triangular, with nonzero diagonal entries, hence invertible. The j-th column of its inverse provides, up to a scalar multiple, the power-form coefficients for p_j , and uniquely so.
 - (ii) Since $DT = \alpha TD$, have $\mu(D^i T p_j) = \alpha^i \mu T D^i p_j = \alpha^i \mu D^i P_J$, therefore $T p_j = \alpha^j p_j$.
- (iii) For $T: f \mapsto f(1-\cdot)$ and the given μ , have $\mu T = T$ and $\alpha = -1$, hence $p_j(1-\cdot) = (-1)^j p_j$, showing that p_j is odd (even) around 1/2 for j odd (even).

With that, since E_j is pp of order j+1 with breaks at \mathbb{Z} , only need to prove that it is in C^{j-1} at each integer, and, since $E_j(\cdot+1) = -E_j$, only need to verify this at 0 where, by that functional equation, this reduces to the assertion that $-D^r p_j(1) = D^r p_j(0)$ for r < j which is exactly the condition $\mu D^r p_j = 0$ for r < j.

The symmetry around 1/2 follows from that for p_i .