- (1) Prove: If $(p_n : n \in \mathbb{N})$ is a sequence of polynomials that converges uniformly on [a ... b] to some $f \notin \Pi$, then $\sup_n \deg p_n = \infty$.
- (2) Prove: If U is a linear positive operator on C[a ... b] for which $U()^j = ()^j$ for j = 0, 1, 2, then $U = \mathrm{id}$.
 - (3) Prove: If $f \in C[0..1]$ vanishes at 0 and 1, then the sequence

$$B_n^{\lfloor \rfloor} f: t \mapsto \sum_j \lfloor \binom{n}{j} f(j/n) \rfloor \gamma_{j,n-j}, \quad n = 1, 2, \dots$$

consists of polynomials with integer coefficients and converges uniformly to f. Here, $\gamma_{r,s}$: $t \mapsto t^r (1-t)^s$ are the polynomials familiar from Bernstein's polynomial operator B_n , and

$$\mathbb{R} \to \mathbb{R} : t \mapsto |t|,$$

the floor function, associates t with the largest integer no bigger than t.

(4) Prove: An $f \in C[0..1]$ is approximable by polynomials with integer coefficients if and only if $f(0), f(1) \in \mathbb{Z}$. (Feel free to use the result of the previous problem even if you haven't managed to prove it.)