887 Spring '03 HOMEWORK assignment 3, due Monday, 10 Mar 03

- (1) Where does the proof of Bernstein's Theorem, 62, break down if we were to use it to prove that the entire sequence (p_k) is Cauchy in $C^{(r)}(\mathbb{T})$?
 - (2) Construct all ba's to $\chi_{[0..\alpha]}$ from $\Pi_0 \subset L_1([0..1])$.
- (3) Let $\|\cdot\| := \|\cdot\|_{\infty}([-1..1])$. Use the fact that a continuous linear functional takes on its norm on the error in a best approximation from the kernel of the linear functional to prove that

$$\sup\{Df(1)/\|f\|: f \in \Pi_n \setminus 0\} = n^2.$$

(Hint: Consider C_n , the **Chebyshev polynomial of degree** n, i.e.,

$$C_n(\cos(t)) = \cos(nt), \quad \forall \ t.$$

You may take for granted that this implicit definition does, indeed, describe a polynomial of degree $\leq n$. Further hint: Use the Lagrange form of the interpolating polynomial from Π_n at some (n+1)-set $U \subset [-1 ... 1]$ to represent $\lambda : \Pi_n \to \mathbb{R} : f \mapsto Df(1)$ as $\lambda_{U,w}$, with U the extrema of C_n in [-1 ... 1].)

(4) Let f be a bounded function, on [-1..1], say, and set

$$E_{n,j}(f) := \inf\{\|f - p\|_{\infty}([-1 ... 1]/n) : p \in \Pi_j\}.$$

Prove: $E_{n,0} = o(1/n)$ iff f is differentiable at 0 and Df(0) = 0.