(1) Prove that the splines E_n of a previous homework satisfy the recurrence

$$E_{n+1} = \int_0^1 E_n(\cdot + t) \, dt / (-2).$$

For the record, the function

$$\mathcal{E}_n := E(\cdot - (n+1)/2)/E(- (n+1)/2)$$

is called the Euler spline of degree n. It has simple knots, at $(n/2) + \mathbb{Z}$, and satisfies $\mathcal{E}_n(m) = (-1)^m$, all $m \in \mathbb{Z}$.

(2) A monospline of degree k with knot sequence t is, by definition, any element of $\Pi_k + S_{k,t}$.

Show that monosplines with simple knots occur naturally as the Peano kernel in a quadrature rule based on function values.

(3) With $\mu := \int_0^1$, show that the 1-periodic function B_k that agrees with p^μ_k on $[0..1)$ is a monospline of degree k. For the record, B_k is the Bernoulli spline of degree k.

(4) Following Glaeser (and Schoenberg), a (polynomial) spline is called perfect if its highest nontrivial derivative is absolutely constant. For example, the Euler spline \mathcal{E}_n of a previous homework is perfect.

Prove that $M(\cdot|t_0, \ldots, t_k)$ is perfect if $t_j = \cos(k - j)\pi/k$, all j.