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Lecture 1: Cardinal B-splines and convolution operators

1. Cardinal B-splines

A cardinal spline of order k is a piecewise polynomial of degree < k, in Ck−2, and with breakpoints
the integers. The space Sk of all cardinal splines of order k is (obviously) a linear space of infinite dimension,
but nonetheless, can be considered ‘small’ in the following way:

Sk is invariant under shifts. Here, a shift is translation by an integer, hence the shift-invariance
means that

f ∈ Sk =⇒ Eαf ∈ Sk, all α ∈ ZZ,

with
Eα : f 7→ f(· − α).

This means that, for whatever f ∈ Sk we choose, the sequence

E(f) := (Eαf : α ∈ ZZ)

is also in Sk. The spline space Sk is then ‘small’ in the sense that it is a principal shift-invariant space:
there exists a function f ∈ Sk whose E(f) already spans the entire space (that’s a vague statement, but will
be made precise later, without a need to topologize Sk. If you insist on a rigorous statement now, equip Sk

with the topology of uniform convergence on compact sets (which makes it a Fréchet space). Then the finite
span of E(f) is dense in Sk).

A generator f in the above sense is not unique. The general theory of shift-invariant spaces will be
invoked later on to show that ‘almost’ any f ∈ Sk generates that space. In particular, the space Sk is local
in the sense that the compactly supported functions in it form a dense subspace, hence one may look for a
compactly supported generator. Among those, the B-spline is the one with minimal support.

None of the properties listed above is proved now. All will be obtained as simple consequences of the
general theory of shift-invariant (SI) spaces.

Definition 1: B-splines. The B-spline Bk of order k is the k-fold convolution of the B-spline of order 1,
i.e.,

Bk = B1∗Bk−1.

The B-spline of order 1,
B1 := χ

[0..1)
,

is the support function of [0 . . 1).

It follows that

(2) Bk(x) =
∫

IR

B1(x − t)Bk−1(t) dt =
∫ x

x−1

Bk−1(t) dt.

Thus (i) supp Bk = [0 . . k], and (ii) Bk > 0 on (0 . . k) (as follows by induction). Also, differentiating (2), we
obtain that

(3) DBk = Bk−1 − E1Bk−1 =: −∆Bk−1,
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with ∆ the forward difference. Since B2 is the continuous piecewise linear hat function (check directly!),
it turns out (by induction) that Bk ∈ Ck−2(IR). (This implies that, in terms of the B-splines B(·|t0, . . . , tk)
discussed in the first part of the course, Bk = B(·|0, . . . , k).)

Fourier transform. The basic connections between convolution and Fourier transformation imply that

B̂k = B̂1

k
.

The computation of B̂1 can be done directly (do it!): B̂1(ω) = 1−e−iω

iω , hence

B̂k(ω) =
(1 − e−iω)k

(iω)k
.

Zeros of the Fourier transform. It is elementary to prove that B̂1(ω) = 0 iff ω ∈ 2πZZ\0 =: L, and that
all these zeros are simple. It follows then that B̂k has a zero of exact order k at each point of L, and vanishes
nowhere else. (Note: the Fourier transform extends to an entire function on C, but still all the zeros of B̂k

lie on the real line, so it does not matter here whether we talk about the real zeros or general zeros, i.e.,
zeros on the whole of C.) Note that, thus, B̂k does not have a 2π-periodic zero.

Definition 4: the SF conditions. We say that the compactly supported φ satisfies the Strang-Fix (SF)
conditions of order k if its Fourier transform φ̂ vanishes to order k at each ω ∈ L, while φ̂(0) 6= 0.

Note that the Fourier transform of φ is entire, thanks to the compact support assumption, hence the
differentiability of φ̂ at the points of L is granted.

Thus, the B-spline Bk satisfies the SF-conditions of order k, and does not have any 2π-periodic zeros.
But who cares? In order to motivate the above discussion I state, without proof, a few theorems (all of them
will be proved during the course; some will be proved in the very near future).

Since the entire discussion is univariate (and will stay so), and since many of our theorems have suitable
multivariate analogs, I’d like to distinguish those theorems that make the difference between the univariate
theory and the multivariate one. The ∗ denotes those theorems that are truly univariate.

First, let us introduce the notion of semi-discrete convolution:

Definition 5. Let φ be a compactly supported function/distribution. The semi-discrete convolution operator
φ∗′ is the linear map

φ∗′ : CZZ → S?(φ) : c 7→
∑
j∈ZZ

Ejφc(j) =
∑
j∈ZZ

φ(· − j)c(j),

with the infinite sum taken, offhand, pointwise. The space

S?(φ)

is defined to be the range of this map, i.e., it is the infinite linear span of the shifts of φ.
The space S?(φ) is one of several interpretations of the notion ‘the shift-invariant space generated by

φ’. Note that it is well-defined only for a compactly supported φ.

Example. For the B-spline Bk, the space S?(Bk) can be characterized as the collection of all functions in
Ck−2(IR) that, on each interval [j . . j + 1), j ∈ ZZ, coincide with some polynomial in Π<k. The claim we
have just made is not obvious. It follows, however, from the characterization of spline spaces that appeared
in the first part of this course.

Definition 6: linear independence. We say that the sequence E(φ) = (Ejφ : j ∈ ZZ) of shifts of φ is
linearly independent if the semi-discrete convolution φ∗′ is 1-1, i.e., its kernel,

ker(φ∗′) := {c ∈ CZZ : φ∗′c = 0},

is trivial, i.e., contains only the zero sequence.
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Remark: The notation φ∗′ and the terminology ‘semi-discrete’ were introduced because there are occa-
sions when we will apply φ∗′ to functions defined on all of IR rather than just on ZZ. The convention then
is that, still,

φ∗′f :=
∑
j∈ZZ

φ(· − j)f(j).

Theorem: the curse of periodic zeros. Let φ be a compactly supported function. Let θ ∈ C. Then φ̂
vanishes on θ+2πZZ if and only if φ∗′eiθ = 0. This says that E(φ) is linearly dependent if φ̂ has a 2π-periodic
zero in C.

Here, to recall,

eξ : x 7→ eξx

is the exponential with frequency ξ.

Theorem∗: the factorization theorem. Let φ be a compactly supported distribution (if you do not
know what a distribution is, assume φ ∈ L1(IR)) that satisfies the SF conditions of order k. Then there
exists a compactly supported distribution η (sorry, one cannot avoid distributions here) such that

φ = Bk∗η.

Theorem: the polynomial reproduction theorem. Let φ be a compactly supported distribution (or a
function in L1(IR)). Then φ satisfies the SF conditions of order k if and only if the map

φ∗′ : Π<k → Π<k : p 7→
∑
α∈ZZ

Eαφp(α)

is a well-defined automorphism (i.e., 1-1 onto its domain). In particular, if φ satisfies the SF conditions of
order k, then Π<k ⊂ S?(φ).

2. Convolution operators

A convolution operator is a map of the form f 7→ v∗f , with v some function (or, more generally, a
distribution) known as the kernel (of the convolution, much different from the kernel of a linear map).
Many convolution operators act as approximate identities, i.e., rather than a single map, a sequence
(vn∗)n of such operators is given, and ‖f − vn∗f‖ → 0 (as n → ∞), for each f in the underlying nls.

Previously in class two such operators were introduced and discussed: the Dirichlet kernel and the Fejér
kernel. These kernels, and a few others, are connected to the cardinal B-splines discussed above and the
goal here is to outline these connections (and to make brief remarks concerning the approximation power of
these kernels).

Definition. Let X be a nls, and let (An)n be a sequence of maps on X. We say that (An)n provides
approximation order k if

X0 := {f ∈ X : ‖f − Anf‖ = O(n−k)}

is dense in X.
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Pertinent examples for X are the spaces C(TT), L2(TT), C(IR), L2(IR). In these examples, the dense
subspace X0 comprises functions that are sufficiently smooth: one of the most fundamental principles of
Approximation Theory is the close relation between the smoothness of a function and its approximability.

Examples of approximate identities that are related to B-splines.
In all these examples, the B-splines are related to the Fourier transform (or Fourier coefficients) of the

kernels. (But, to fully appreciate these examples, it pays to look first at the next lecture, specifically at the
periodization of f ∈ L1(IR).)
Example 1. We take v̂n := cnχ

[−n..n]
. A direct calculation shows that

vn(x) = cn
sin(nx)

πx
.

(Exercise: find the values of (cn)n (that makes this an approximate identity?).)
The Dirichlet kernel is the periodic analog of the above example: we only need to interpret χ

Ω
as the

sequence that assumes the value 1 at each of the integers in Ω, and the value 0 at all other integers. Thus,
in the periodic case we get here

Dn(x) =
1
2π

n∑
j=−n

eijx.

Example 2. With χn := χ
[−n..n]

, we take v̂n := cnχ
(n/2)

∗χ
(n/2)

. Thus, v̂n is a hat function supported on
[−n . . n].

The Fejér kernel Fn is the periodic analog of the above example, i.e., its Fourier coefficients are obtained
by evaluating v̂n at the integers:

Fn(x) =
n∑

j=−n

(1 − |j|
n

) eijx.

Since Fn was obtained by convolving the D-kernel on the Fourier domain, it must be the square of the
D-kernel, hence it is positive.

In Fourier analysis, the Fejér kernel is favored over the Dirichlet kernel (primarily because of the fact
that Fn∗f converges in C(TT) pointwise). However, from the point of view of Approximation Theory, the
Dirichlet kernel is much better. To understand why, solve the following exercises:

Exercise. Let f ∈ L2(TT) be a smooth function (say, in W k
2 (TT), i.e., having k derivatives in L2(TT)).

Compare the decay of
n 7→ ‖f − Dn∗f‖L2

to the decay of
n 7→ ‖f − Fn∗f‖L2 .

Another kernel of interest is the de La Vallée Poussin kernel. Its continuous version is obtained by
summing, on the Fourier domain, shifts of (the Fourier transform) of the (continuous analog of the) Fejér
kernel, i.e., shifts of the hat function, thus getting

v̂n := the broken line that connects (−∞, 0), (−2n, 0), (−n, 1), (n, 1), (2n, 0), (∞, 0).

Thus the Fourier coefficients of Vn, de La Vallée Poussin’s kernel, are obtained by evaluating the above v̂n

at the integers.

Exercise. Prove that (a) Vn∗f converges in C(TT) to f for every f , and (b) that ‖f − Vn∗f‖L2 = O(n−k),
for every f ∈ W k

2 (TT).

Next: Poisson’s summation formula, and its applications
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