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Lecture 2: Poisson’s summation formula

1. The formula

In essence, the PSF shows that two possibly different periodizations of a function/distribution are
actually the same.
The simplest version of the PSF is as follows:

Theorem 1.1. Let f € Li1(IR). Let
o= f+'1:= Z Eif
JEZ

be the periodization of f. Then the Fourier series of f° is

Z f(a)eia-
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Proof: Since f € Li(IR), it is easy to see that the series f+'1 converge in L;1([0..1]) (prove it!). In
order to prove the theorem, we just need to compute the Fourier coefficients of the resulting f°. However,
for any bounded periodic function g, we have that
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(prove it! in particular, justify the interchange of summation and integration here). Choosing g := e_i,, we
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obtain that the a-coefficient of f+'1 is f(«), which is exactly what is claimed. O
Another version of the PSF is that

(1.2) SNt = Fla.
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Note that this identity follows by an evaluation of the relation

fF1="3" fl@)ea
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at the origin. However, one must be careful here: first, the Fourier series of f#*'1 may not converge in
a rigorous sense to that function; second, even if it does converge, the convergence may not be pointwise
everywhere... However, it is easy to describe situations when (1.2) makes sense and is true (warning: there
are notorious examples where both sides of (1.2) make sense but the equality there is invalid). A simple, yet
useful, example is as follows:
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Corollary 1.3. Let f be a rapidly decaying continuous function, and assume that (f(a))aec2-z is in £;.
Then (1.2) holds for this function.

Proof: Due to the assumption here on f, the series > o % f(a)eia converges absolutely and
uniformly to some function in C([0 .. 1]). Theorem 1.1 identifies that function as fx'1, hence (f*'1)(0) =

f(a). The equality (f*'1)(0) = > ..., f(j) is justified by the fact that f is rapidly decaying and
ae2nZl JEZL
continuous. O



Another useful version of the PSF is the distributional version:
Corollary 1.4. The identity
Sa- Y e
JEXL a2

is valid in the distributional sense, as well as in the sense of tempered distributions.

Proof: Let f be a test function. Then
O 6 ) =Y 1),
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while

<Zeia>f> = Z]?(a)u

so the claim follows from the fact that test functions satisfy (1.2) (by Corollary 1.3). O

The final version of the PSF that we discuss is less well known. The following theorem states the
‘compact support version’ of it.
Theorem 1.5. Let ¢ be a compactly supported distribution, and let f be in C*°(IR). Then
o' f= Y ¢x(einf)
ac2nZl

The convergence of both sides here holds in the topology of distributions. If f grows only slowly at oo, that
convergence holds also in the topology of tempered distributions.

Proof: Since f is infinitely differentiable, it is a multiplier in the space of distributions (with the
additional assumption of slow growth, it is also a multiplier in the tempered distribution space). Thus we

get from Corollary 1.4 that
(> 6;) =ox(f Y _eia).
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Now, since convolution with a compactly supported function, as well as multiplication by a multiplier, are
both continuous in the space of (tempered) distributions, and since the sum )  ej, converges in that space,

we obtain
+(fD i) = (D feia) = > dx(feia).
Similar reasoning shows that

(D 05) = 0x(3_ ;) = 6+(}_ F(5)5) = D () xd; = 9/ f.
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2. Applications of the PSF

Lemma 2.1. Let (fx)r be a sequence of tempered distributions, and assume that (supp fAk) k. are pairwise
disjoint sets. Then (fy) is linearly independent in the sense that, if ), c(k)fi converges to 0 (in the
temp.dist. topology) for some coefficients (¢(k))x, then c(k) =0, all k.

Proof: The Fourier transform is continuous on the space of tempered distributions, hence, if
> opc(k)fr =0, then also >, ¢(k) f = 0. Also, it is elementary to prove that any collection of distributions
(tempered or not) with pairwise disjoint supports is linearly independent. O



Recall that £ := 277Z\0.

Corollary 2.2. Let ¢ be compactly supported, and let p be some polynomial. If ) . ¢*(eiap) Iis a
polynomial, then ¢x(e;op) = 0, for each € L.

Proof: The Fourier transform of ¢*(eip) is supported at {—a} (prove it!), hence the Fourier trans-
form of )7 ., ¢*(eiap) is supported on L. Being assumed to be a polynomial, it must then be zero, since
the Fourier transform of any polynomial is supported at {0}. O

Lemma 2.3. Let p be a polynomial, « € C, and ¢ compactly supported. Then:

(-iD)$) ()
ﬁD p.

(2.4) ox(€iap) = €iq Z

Jj=0

In particular (choose a = 0), ¢+(I1) C Iy for all k; also (since (D’p:j =0,...,degp) is evidently linearly
independent), ¢xeiop = 0 iff ¢ has a zero at « of order at least 1 + degp.

Proof: It suffices to prove (2.4) for p an arbitrary monomial ()™ : x — z™. I will also assume for
simplicity that ¢ is a function (and not merely a distribution). Then
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Theorem 2.5. Let ¢ be a compactly supported distribution/function, and let k be a non-negative integer.

Then ¢+" maps Il into itself if and only iquS has a k-fold zero at each o € L, and, in this case, ox' = %
on . Moreover, this map is onto Il if (in addition) ¢(0) # 0.

Proof: “—=" Let p € II. By Theorem 1.5,

¢¥'p— prp =Y Px(ciap).
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Thus, if we assume that ¢+'p is a polynomial, then, with Lemma 2.3, Zaez: ¢x(ejop) is a polynomial, hence
(by Corollary 2.2) ¢x(ejop) = 0 for each « € L. Invoking Lemma 2.3, we conclude that &5 has a (1 4 degp)-
fold zero at each o € L. Since, by assumption, ¢+’ maps Il into itself, we can now choose p to be some
polynomial of degree k — 1, and we are done.

“«<=" Assume that ¢ has a k-fold zero at each & € L. Then, given p € Iy, ¢x(ejop) = 0 for every
a € L (Lemma 2.3), hence ¢+'p = ¢*p (Theorem 1.5), while, by (2.4), ¢xp € .

Finally, (2.4) implies that

dxp = $(O)p + Lo.t.

(Lo.t. := ‘lower order terms’). This shows that, if 5(0) # 0, then ¢« is injective on II, hence in particular on
II.;, hence ¢+’ is injective on that latter space, too. O



Theorem 2.6. Let ¢ be a compactly supported distribution, and let ¥ € C. Then gg vanishes on ¥ + 277
iff ¢px’es9 = 0.

Proof: Assume first that © = 0, hence e;y = 1. By Theorem 2.5, o'l = 0 iff (Z vanishes on £ and
(by (2.4)) ¢(0) =0, i.e., iff ¢ vanishes on 27ZZ.

If ¥ # 0, then we can use the fact that ¢x'e;y = 0 iff (e_jwg)x'l = 0 (since always ey(f*'g) =
(egf)*'(epg)). Thus, ¢+'e;y = 0 iff the Fourier transform of e_;9¢ vanishes on 2w7Z. However, that transform
is ¢(- + 0). O



