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Lecture 2: Poisson’s summation formula

1. The formula

In essence, the PSF shows that two possibly different periodizations of a function/distribution are
actually the same.

The simplest version of the PSF is as follows:

Theorem 1.1. Let f ∈ L1(IR). Let

f◦ := f∗′1 :=
∑
j∈ZZ

Ejf

be the periodization of f . Then the Fourier series of f◦ is∑
α∈2πZZ

f̂(α)eiα.

Proof: Since f ∈ L1(IR), it is easy to see that the series f∗′1 converge in L1([0 . . 1]) (prove it!). In
order to prove the theorem, we just need to compute the Fourier coefficients of the resulting f◦. However,
for any bounded periodic function g, we have that∫

[0..1]

(f∗′1)(t)g(t) dt =
∫

IR

f(t)g(t) dt

(prove it! in particular, justify the interchange of summation and integration here). Choosing g := e−iα, we
obtain that the α-coefficient of f∗′1 is f̂(α), which is exactly what is claimed.

Another version of the PSF is that

(1.2)
∑
j∈ZZ

f(j) =
∑

α∈2πZZ

f̂(α).

Note that this identity follows by an evaluation of the relation

f∗′1 =
∑

α∈2πZZ

f̂(α)eiα

at the origin. However, one must be careful here: first, the Fourier series of f∗′1 may not converge in
a rigorous sense to that function; second, even if it does converge, the convergence may not be pointwise
everywhere... However, it is easy to describe situations when (1.2) makes sense and is true (warning: there
are notorious examples where both sides of (1.2) make sense but the equality there is invalid). A simple, yet
useful, example is as follows:

Corollary 1.3. Let f be a rapidly decaying continuous function, and assume that (f̂(α))α∈2πZZ is in `1.
Then (1.2) holds for this function.

Proof: Due to the assumption here on f̂ , the series
∑

α∈2πZZ f̂(α)eiα converges absolutely and
uniformly to some function in C([0 . . 1]). Theorem 1.1 identifies that function as f∗′1, hence (f∗′1)(0) =∑

α∈2πZZ f̂(α). The equality (f∗′1)(0) =
∑

j∈ZZ f(j) is justified by the fact that f is rapidly decaying and
continuous.
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Another useful version of the PSF is the distributional version:

Corollary 1.4. The identity ∑
j∈ZZ

δj =
∑

α∈2πZZ

eiα

is valid in the distributional sense, as well as in the sense of tempered distributions.

Proof: Let f be a test function. Then

〈
∑

j

δj , f〉 =
∑

j

f(j),

while
〈
∑
α

eiα, f〉 =
∑
α

f̂(α),

so the claim follows from the fact that test functions satisfy (1.2) (by Corollary 1.3).

The final version of the PSF that we discuss is less well known. The following theorem states the
‘compact support version’ of it.

Theorem 1.5. Let φ be a compactly supported distribution, and let f be in C∞(IR). Then

φ∗′f =
∑

α∈2πZZ

φ∗(eiαf).

The convergence of both sides here holds in the topology of distributions. If f grows only slowly at ∞, that
convergence holds also in the topology of tempered distributions.

Proof: Since f is infinitely differentiable, it is a multiplier in the space of distributions (with the
additional assumption of slow growth, it is also a multiplier in the tempered distribution space). Thus we
get from Corollary 1.4 that

φ∗(f
∑

j

δj) = φ∗(f
∑
α

eiα).

Now, since convolution with a compactly supported function, as well as multiplication by a multiplier, are
both continuous in the space of (tempered) distributions, and since the sum

∑
α eiα converges in that space,

we obtain
φ∗(f

∑
α

eiα) = φ∗(
∑
α

feiα) =
∑
α

φ∗(feiα).

Similar reasoning shows that

φ∗(f
∑

j

δj) = φ∗(
∑

j

fδj) = φ∗(
∑

j

f(j)δj) =
∑

j

f(j)φ∗δj = φ∗′f.

2. Applications of the PSF

Lemma 2.1. Let (fk)k be a sequence of tempered distributions, and assume that (supp f̂k)k are pairwise
disjoint sets. Then (fk)k is linearly independent in the sense that, if

∑
k c(k)fk converges to 0 (in the

temp.dist. topology) for some coefficients (c(k))k, then c(k) = 0, all k.

Proof: The Fourier transform is continuous on the space of tempered distributions, hence, if∑
k c(k)fk = 0, then also

∑
k c(k)f̂k = 0. Also, it is elementary to prove that any collection of distributions

(tempered or not) with pairwise disjoint supports is linearly independent.
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Recall that L := 2πZZ\0.

Corollary 2.2. Let φ be compactly supported, and let p be some polynomial. If
∑

α∈L φ∗(eiαp) is a
polynomial, then φ∗(eiαp) = 0, for each α ∈ L.

Proof: The Fourier transform of φ∗(eiαp) is supported at {−α} (prove it!), hence the Fourier trans-
form of

∑
α∈L φ∗(eiαp) is supported on L. Being assumed to be a polynomial, it must then be zero, since

the Fourier transform of any polynomial is supported at {0}.

Lemma 2.3. Let p be a polynomial, α ∈ C, and φ compactly supported. Then:

(2.4) φ∗(eiαp) = eiα

∑
j≥0

((−iD)jφ̂)(α)
j!

Djp.

In particular (choose α = 0), φ∗(Πk) ⊂ Πk for all k; also (since (Djp : j = 0, . . . ,deg p) is evidently linearly

independent), φ∗eiαp = 0 iff φ̂ has a zero at α of order at least 1 + deg p.

Proof: It suffices to prove (2.4) for p an arbitrary monomial ()m : x 7→ xm. I will also assume for
simplicity that φ is a function (and not merely a distribution). Then

φ∗(eiα()m) =
∫

IR

φ(t)eiα(·−t)(· − t)m dt

=eiα

m∑
j=0

(
m

j

)
()m−j

∫
IR

φ(t)e−iαt(−t)j dt

=eiα

m∑
j=0

1
j!

Dj(()m) (−iD)j(
∫

IR

φ(t)e−i(·)t dt)(α)

=eiα

∑
j≥0

1
j!

Dj(()m) ((−iD)jφ̂)(α).

Theorem 2.5. Let φ be a compactly supported distribution/function, and let k be a non-negative integer.

Then φ∗′ maps Π<k into itself if and only if φ̂ has a k-fold zero at each α ∈ L, and, in this case, φ∗′ = φ∗
on Π<k. Moreover, this map is onto Π<k if (in addition) φ̂(0) 6= 0.

Proof: “=⇒” Let p ∈ Π. By Theorem 1.5,

φ∗′p − φ∗p =
∑
α∈L

φ∗(eiαp).

Thus, if we assume that φ∗′p is a polynomial, then, with Lemma 2.3,
∑

α∈L φ∗(eiαp) is a polynomial, hence
(by Corollary 2.2) φ∗(eiαp) = 0 for each α ∈ L. Invoking Lemma 2.3, we conclude that φ̂ has a (1 + deg p)-
fold zero at each α ∈ L. Since, by assumption, φ∗′ maps Π<k into itself, we can now choose p to be some
polynomial of degree k − 1, and we are done.

“⇐=” Assume that φ̂ has a k-fold zero at each α ∈ L. Then, given p ∈ Π<k, φ∗(eiαp) = 0 for every
α ∈ L (Lemma 2.3), hence φ∗′p = φ∗p (Theorem 1.5), while, by (2.4), φ∗p ∈ Π<k.

Finally, (2.4) implies that
φ∗p = φ̂(0)p + l.o.t.

(l.o.t. := ‘lower order terms’). This shows that, if φ̂(0) 6= 0, then φ∗ is injective on Π, hence in particular on
Π<k, hence φ∗′ is injective on that latter space, too.
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Theorem 2.6. Let φ be a compactly supported distribution, and let ϑ ∈ C. Then φ̂ vanishes on ϑ + 2πZZ
iff φ∗′eiϑ = 0.

Proof: Assume first that ϑ = 0, hence eiϑ = 1. By Theorem 2.5, φ∗′1 = 0 iff φ̂ vanishes on L and
(by (2.4)) φ̂(0) = 0, i.e., iff φ̂ vanishes on 2πZZ.

If ϑ 6= 0, then we can use the fact that φ∗′eiϑ = 0 iff (e−iϑφ)∗′1 = 0 (since always eθ(f∗′g) =
(eθf)∗′(eθg)). Thus, φ∗′eiϑ = 0 iff the Fourier transform of e−iϑφ vanishes on 2πZZ. However, that transform
is φ̂(· + ϑ).
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