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Lecture 3: Representation and bases in Hilbert spaces

Let H be a separable Hilbert space and let X ⊂ H be a countable subset that is fundamental,
i.e., span(X) = H. One often wants to be able to express the elements h of H as linear combinations
h =

∑
x∈X ch(x)x of elements of X. For this representation to be useful, there must be (1) a good way to

compute the coefficients (ch(x))x∈X form the vector h, (2) a good way to reconstruct h from its coefficients
(ch(x))x∈X , (3) the coefficients (ch(x))x∈X must “tell the story”, i.e., reflect properties of h so that one would
gain by working with the coefficients rather than with the vector h itself, and (4) X cannot contain many
essentially different elements (put positively, the elements in X should be obtainable from a few “atoms” by
simple operations like translation, multiplication by some functions, and dilation).

Definition 1. The linear map

TX : `2(X) → H : c 7→
∑
x∈X

c(x)x

is called the synthesis operator.

This definition may not make sense without further assumptions. Observe, however, that the action of
TX on sequences with finite support, i.e., on the linear space

`0(X) := {c ∈ CX : # supp c <∞},

is well defined, and `0(X) is dense in `2(X), hence TX is always densely defined. If, in addition, ‖TX |`0(X)‖ <
∞, one can (uniquely) extend TX |`0(X) to all of `2(X), preserving its norm, and call this extension TX . For
this reason, one makes the following

Definition 2. X is called a Bessel system if TX |`0(X) is bounded (and then TX is defined on all of `2(X)).

Example 3. Let φ ∈ L2(IR), X := E(φ) := (Ejφ)j∈ZZ, and H := S(φ) := span(E(φ)) (here, of course,
the closure is taken in the topology of L2(IR)).

Exercise 1. In Example 3, E(φ) is Bessel if and only if [φ̂, φ̂] ∈ L∞(IR). Moreover, ‖TX‖2 =
‖[φ̂, φ̂]‖L∞(IR). Here,

[f, g] :=
∑

α∈2πZZ

Eαf Eαg =
∑

α∈2πZZ

Eα(fg) ∀f, g ∈ L2(IR)

is the bracket product of f and g, i.e., the 2π-periodization of fg.
Note that, if φ, ψ ∈ L2(IR), then φ̂, ψ̂ ∈ L2(IR), hence φ̂ψ̂ ∈ L1(IR), hence [φ̂, ψ̂] is the L1-limit of the

sum
∑

α∈2πZZE
α(φ̂ψ̂), hence in L1(TT). This is useful information since, at least for any finitely supported

c, (TE(φ)c)∧ =
∑

j c(j)(φ(· − j))∧ =
∑

j c(j)e−ijφ̂, therefore

(TE(φ)c)∧ = ĉφ̂,

with the 2π-periodic function
ĉ :=

∑
j

c(j)e−ij
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the discrete Fourier transform of the sequence c. Therefore, by the Plancherel identity and elementary
properties of the Fourier transform, at least for any finitely supported c and d,

(4) 〈TE(φ)c, TE(ψ)d〉 =
1
2π

〈ĉφ̂, d̂ψ̂〉 =
1
2π

∫
IR

ĉd̂φ̂ψ̂ =
1
2π

∫
TT

ĉd̂[φ̂, ψ̂].

In particular, with c = δ0, d = δj , we find that

〈φ, ψ(· − j)〉 =
1
2π

∫
TT

eij [φ̂, ψ̂] = [φ̂, ψ̂]∧(−j).

As a corollary to this formula, we have: [φ̂, ψ̂] = 1 a.e. iff 〈φ,Ejψ〉 = δj0.

Exercise 1.1 Use Exercise 1 to prove that E(φ) is Bessel in case φ decays ‘mildly’ at ∞, and also in
case φ is ‘mildly smooth’. Quantify, for each case, the notion of ‘mild decay’ and ‘mild smoothness’.

Observation: For any R ∈ bL(H), RTX = TRX , since both sides are bounded linear maps that agree
on the fundamental set X (since, for any x ∈ X, RTXδx = Rx = TRXδx).

Proposition 5. Let X be a Bessel system. Then TFAE:
(1) TX is bounded below, i.e., infc6=0 ‖TXc‖H/‖c‖`2(X) > 0.
(2) ranTX is closed and kerTX = {0}.
(3) There exists R ∈ bL(H) s.t. 〈Rx, x′〉 = δxx′ ∀x, x′ ∈ X.

Proof: (1)⇐⇒(2) This equivalence holds for any bounded linear map T from a Banach space to a
Banach space.

(2)=⇒(3) Since ranTX = ranTX ⊇ span(X) = H, TX is ontoH. A 1-1 map from a Banach space onto a
Banach space is boundedly invertible by the Open Mapping Theorem. So, there exists T−1

X ∈ bL(H, `2(X)).
Let R := (T−1

X )∗T−1
X , where ∗ denotes the adjoint of an operator. Then R ∈ bL(H) and 〈Rx, x′〉H =

〈T−1
X )∗T−1

X x, x′〉H = 〈T−1
X x, T−1

X x′〉`2(X) = 〈δx, δx′〉`2(X) = δxx′ .
(3)=⇒(1) The bi-orthogonality condition in (3) states that, for any x, x′ ∈, δxx′ = 〈Rx, x′〉 = 〈TRXδx, TXδx′〉 =

〈δx, T ∗
RXTXδx′〉, hence

T ∗
RXTX = id

on `0(X). Since TX is bounded, so is TRX = RTX , hence so is T ∗
RX , and so, the above identity extends to

all of `2(X). This means that TX has a bounded left inverse, hence must be bounded below.

Exercise 2. The dual system RX is unique (since X is fundamental for H).

Definition 6. A Bessel set X ⊂ H is called a Riesz basis (or a stable basis) if the conditions (1)–(3) above
are satisfied.

Definition 7. The map T ∗
X : H → `2(X) : h 7→ (〈h, x〉 : x ∈ X) is the analysis operator.

This definition may not make sense for an arbitrary X ⊂ H, since the sequences (〈h, x〉 : x ∈ X) do not
have to lie in `2(X). However,

Exercise 3. If TX ∈ bL(`2(X), H) or T ∗
X ∈ bL(H, `2(X)), then both maps are bounded, have the

same norm, and T ∗
X is the adjoint of TX . Also (given that X is fundamental), T ∗

X is 1-1.
The following is standard.

Proposition 8. Suppose H1, H2 are Hilbert spaces and T ∈ bL(H1, H2). Then ranT is closed in H2 if and
only if ranT ∗ is closed in H1. If this is the case, then T is 1-1 iff T ∗ is onto.

Proposition 9. Let φ ∈ L2(IR) be compactly supported, X := E(φ), and H := S(φ) ⊆ L2(IR). TFAE:
(1) E(φ) is a Riesz basis for H.

(2) [φ̂, φ̂] vanishes nowhere in IR.
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(3) φ̂ does not have a real 2π-periodic zero.

Remark: The assumption on φ implies that φ̂ is entire and, since 〈φ̂, e−ijφ̂〉 = [φ̂, φ̂]∨(j) = 0 for all
but finitely many j ∈ ZZ, [φ̂, φ̂] is equal a.e. to a trigonometric polynomial.

Exercise 4. Prove that
∑
α∈2πZZE

α|φ̂|2 converges uniformly on compact sets, hence [φ̂, φ̂] is equal to
that trigonometric polynomial everywhere. Prove the equivalence of (2) and (3).

Remark: With that, by (4), ‖TE(φ)c‖2 = 1
2π

∫
TT
|ĉ|2[φ̂, φ̂] ≥ inf[φ̂, φ̂]‖c‖2, for any finitely supported

c. Since [φ̂, φ̂] is continuous (and `0 is dense in `2), this shows that (2)=⇒(1), while if [φ̂, φ̂](θ) = 0, then
[φ̂, φ̂] = O(ε) on Bε(θ), hence ‖TE(φ)cε‖2 = O(ε) with cε chosen to have ‖cε‖ ∼ 1 yet ĉε small off Bε(θ) (e.g.,
ĉε = Dd1/εe(· − θ), the θ-translate of a Dirichlet kernel), thus proving (1)=⇒(2).

Proof: (1)=⇒(2) Suppose that [φ̂, φ̂](θ) = 0 for some θ ∈ IR (WLOG, θ ∈ TT, since [φ̂, φ̂] is 2π-
periodic). For any ε > 0, define χε := χBε(θ)+2πZZ, where Br(x) denotes the ball of radius r centered at x.
Let cε := 1

2π ((χε|TT)∧(α))α∈ZZ. Then

(10) ‖χε|TT‖2
L2(TT) = 2π‖cε‖2

`2(X).

On the other hand,

(TXcε)∧ =


∑
j∈ZZ

cε(j)Ejφ




∧

=
∑
j∈ZZ

cε(j)e−ijφ̂ = χεφ̂

since
∑
j∈ZZ cε(j)e−ij|TT = χε|TT. Therefore,

(11)
2π‖TX(cε)‖2

L2(IR) = ‖(TXcε)∧‖2
L2(IR) = ‖[χεφ̂, χεφ̂]|TT‖L1(TT) = ‖(χε[φ̂, φ̂])|TT‖L1(TT)

‖[φ̂, φ̂]|Bε(θ)‖L1(TT) ≤ ‖[φ̂, φ̂]|Bε(θ)‖L∞(Bε(θ))‖χε|TT‖L1(TT) = ‖[φ̂, φ̂]|Bε(θ)‖L∞(Bε(θ))‖χε|TT‖2
L2(TT).

Combining (10) and (11), we get

inf
c∈`2(X)

‖TXc‖
‖c‖ ≤ inf

ε>0
‖[φ̂, φ̂]|Bε(θ)‖1/2

L∞(Bε(θ)) = 0,

since [φ̂, φ̂](θ) = 0 and [φ̂, φ̂] is continuous. But this means that condition (1) of Proposition 5 is violated,
so X is not a Riesz basis.

(2)=⇒(1) Since [φ̂, φ̂] is a continuous non-vanishing periodic function, [φ̂, φ̂]−1 ∈ L∞(IR), hence φ̂

[φ̂,φ̂]
∈

L2(IR) and ψ :=
(

φ̂

[φ̂,φ̂]

)∨
∈ L2(IR). Note that [τf, g] = τ [f, g] for any f , g ∈ L2(IR) and a 2π-periodic

function τ s.t. τf ∈ L2(IR). Consequently,

[ψ̂, ψ̂] = [
φ̂

[φ̂, φ̂]
,

φ̂

[φ̂, φ̂]
] =

[φ̂, φ̂]

[φ̂, φ̂]2
=

1

[φ̂, φ̂]
∈ L∞(IR),

so, by Exercise 1 again, E(ψ) is Bessel. By Theorem 12 (to be proved in the nearest future), E(ψ) ⊆ H. Let

R : E(φ) → H : Eαφ 7→ Eαψ. Show thatRX = E(ψ) is the dual system forX. Indeed, [φ̂, ψ̂] = [φ̂, φ̂

[φ̂,φ̂]
] = 1,

so, by the remark preceding Proposition 5, 〈φ,Eαψ〉 = δα0, hence 〈Eαφ,Eβψ〉 = δ(α−β)0 = δαβ . So, the
operator R extends to a map in bL(H) satisfying condition (3) of Proposition 5. Therefore, X is a Riesz
basis.

Theorem 12. Let φ, f ∈ L2(IR). Then f ∈ S(φ) iff f̂ = τ φ̂ for some 2π-periodic function τ .
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