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Lecture 3: Representation and bases in Hilbert spaces

Let H be a separable Hilbert space and let X C H be a countable subset that is fundamental,
ie., span(X) = H. One often wants to be able to express the elements h of H as linear combinations
h =73, cx cn(x)r of elements of X. For this representation to be useful, there must be (1) a good way to
compute the coefficients (¢j,(x))zex form the vector h, (2) a good way to reconstruct h from its coefficients
(cn())zex, (3) the coefficients (cp())rcx must “tell the story”, i.e., reflect properties of h so that one would
gain by working with the coefficients rather than with the vector h itself, and (4) X cannot contain many
essentially different elements (put positively, the elements in X should be obtainable from a few “atoms” by
simple operations like translation, multiplication by some functions, and dilation).

Definition 1. The linear map
Tx :l2(X) > H:c— Z c(z)x
zeX

is called the synthesis operator.

This definition may not make sense without further assumptions. Observe, however, that the action of
T'x on sequences with finite support, i.e., on the linear space

l(X):={ce CX : #suppe < oo},

is well defined, and £ (X) is dense in £2(X), hence T’x is always densely defined. If, in addition, || Tx |¢,(x)l| <
0o, one can (uniquely) extend T'x|g,(x) to all of £5(X), preserving its norm, and call this extension T'x. For
this reason, one makes the following

Definition 2. X is called a Bessel system if T'x |4, (x) is bounded (and then T is defined on all of £5(X)).

Example 3. Let ¢ € Ly(R), X := E(¢) := (E'¢)jem, and H := S(¢) := span(E(¢)) (here, of course,
the closure is taken in the topology of L2(IR)).

~

Exercise 1. In Example 3, E(¢) is Bessel if and only if [¢,¢] € Lso(IR). Morecover, ||Tx |2 =
||[¢a ¢]||LDQ(R) Herev

[f.9l:= > E“fE%9g= Y E°(fg) Vfg€ L(R)

ac2nZl ac2nZ

is the bracket product of f and g, i.e., the 27-periodization of fg.

Note that, if ¢, ¥ € Ly(IR), then gfi)\, ﬂ; € Lo(IR), hence (EZ € L1(IR), hence [QAS, 15] is the Li-limit of the
sum Y o EQ(QASZ), hence in Lq (). This is useful information since, at least for any finitely supported
¢, (Toe)" = 225 cli)(6(- = )" = X, e(j)e—i;6, therefore

o~

(Tp(gs)e)" = o,

with the 27-periodic function



the discrete Fourier transform of the sequence c¢. Therefore, by the Plancherel identity and elementary
properties of the Fourier transform, at least for any finitely supported ¢ and d,

1  _~ ~ 1 A= 1 F~
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In particular, with ¢ = dg, d = 9;, we find that

@b =) = 3= | esl6. )= B9

As a corollary to this formula, we have: [(E, J} =1 a.e. iff (¢, EI)) = &j0.

Exercise 1.1 Use Exercise 1 to prove that E(¢) is Bessel in case ¢ decays ‘mildly’ at oo, and also in
case ¢ is ‘mildly smooth’. Quantify, for each case, the notion of ‘mild decay’ and ‘mild smoothness’.

Observation: For any R € bL(H), RTx = Trx, since both sides are bounded linear maps that agree
on the fundamental set X (since, for any z € X, RTxd, = Rr = Trx0:).

Proposition 5. Let X be a Bessel system. Then TFAE:
(l) Tx is bounded below, i.e., infc;ﬁo ”TXC”H/HCHZQ(X) > 0.
(2) ranTx is closed and ker Tx = {0}.

(3) There exists R € bL(H) s.t. (Rx,a') = 0z Vax,2’ € X.

Proof: (1)<=-(2) This equivalence holds for any bounded linear map 7" from a Banach space to a
Banach space.

(2)=(3) SinceranTx =ranTx D span(X) = H, Tx isonto H. A 1-1 map from a Banach space onto a
Banach space is boundedly invertible by the Open Mapping Theorem. So, there exists T ' € bL(H, £2(X)).
Let R := (Tx')*Tx', where % denotes the adjoint of an operator. Then R € bL(H) and (Rx,2')y =
<T§1)*T§1I,I/>H = <T§11‘,T§1I/>gz(x) = <5w7 5$/>g2(X) = 63¢x/.

(3)==(1) The bi-orthogonality condition in (3) states that, for any x, 2’ €, §;»» = (Rx,2') = (Trx 0z, Tx0s) =
(02, ThxTxd5), hence

TiTx = id

on ¢y(X). Since Tx is bounded, so is Trx = RTx, hence so is T}y, and so, the above identity extends to
all of ¢3(X). This means that Tx has a bounded left inverse, hence must be bounded below. |

Exercise 2. The dual system RX is unique (since X is fundamental for H).

Definition 6. A Bessel set X C H is called a Riesz basis (or a stable basis) if the conditions (1)—(3) above
are satisfied.

Definition 7. The map T% : H — (2(X) : h — ((h,z) : € X) is the analysis operator.

This definition may not make sense for an arbitrary X C H, since the sequences ((h,z) : © € X) do not
have to lie in ¢2(X). However,

Exercise 3. If Tx € bL({3(X),H) or T% € bL(H,{2(X)), then both maps are bounded, have the
same norm, and T% is the adjoint of T'x. Also (given that X is fundamental), T% is 1-1.
The following is standard.

Proposition 8. Suppose Hy, Hy are Hilbert spaces and T € bL(Hy, Hy). Then ranT is closed in Hs if and
only if ranT™* is closed in Hy. If this is the case, then T is 1-1 iff T* is onto.

Proposition 9. Let ¢ € Lo(IR) be compactly supported, X := E(¢), and H := S(¢) C Ly(IR). TFAE:
(1) E(¢) is a Riesz basis for H.
(2) [¢, ¢| vanishes nowhere in IR.



(3) ¢ does not have a real 2n-periodic zero.

~ ~

Remark: The assumption on ¢ implies that qAS is entire and, since <$,€71j¢> = [gfﬁ\, 1V(j) = 0 for all
but finitely many j € 7ZZ, [¢, ¢] is equal a.e. to a trigonometric polynomial.

~

Exercise 4. Prove that ), » EC“|(;A5|2 converges uniformly on compact sets, hence [g/é\, | is equal to
that trigonometric polynomial everywhere. Prove the equivalence of (2) and (3).

~

Remark: With that, by (4), |Teg)cll> = = [ [c12[¢, 3] > inf[o, ]||c||?, for any finitely supported
Since [¢, @] is continuous (and £y is dense in £5), this shows that (2)==(1), while if [¢, $](6) = 0, then
[5 @] = O(e) on B.(6), hence || Ti(gyce||> = O(e) with ¢, chosen to have ||cc|| ~ 1 yet & small off B.(6) (e.g.,
= Dr1/c1(- — 0), the f-translate of a Dirichlet kernel), thus proving (1)==(2).
Proof: (1)=(2) Suppose that [¢,3](d) = 0 for some § € R (WLOG, 6 € T, since [¢, @] is 27-
periodic). For any ¢ > 0, define x. := XB.(0)+2r7%, Where B, (z) denotes the ball of radius r centered at x.

Let ¢, := % ((XE|T)A(a))a€Z. Then

(10) HXE‘THLQ(’]I‘) 27T||CE||€2(X)
On the other hand,
A
(Txeo)" = Z Cs(j)Ej¢ = Z Cs(j)efij;g: Xs‘g
JEZ JEZL

since Zjez ce(j)e—ijlm = xe|w. Therefore,

~

) 27| Tx (co) |2, my = 1(Txce) 7, m) = IlXed: Xellw Ly () = [[(xe[0: @Dl o )
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Combining (10) and (11), we get

[Txell _ 7

f N 1/2 -0
cela(X) ||| < bl el b0l L 5.0 = 0

~

since [gg, (5](9) =0 and [(E, | is continuous. But this means that condition (1) of Proposition 5 is violated,
so X is not a Riesz basis. .
(2)=>(1) Since [¢, ¢] is a continuous non-vanishing periodic function, [¢, #| ! € Lo (IR), hence [3% €

Ls(R) and ¢ := (%) € Ly(IR). Note that [7f,g] = 7[f,g] for any f, g € Ly(IR) and a 2m-periodic
(R

%,
function 7 s.t. 7f € Ly(IR). Consequently,
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so, by Exercise 1 again, E(v) is Bessel. By Theorem 12 (to be proved in the nearest future), E(¢) C . H. Let
R:E(¢) — H : ¢ — E*y. Show that RX = E(1) is the dual system for X. Indeed, [¢, ¥] = [¢, —Z< = ¢1] 1,
so, by the remark preceding Proposition 5, (¢, E“)) = 640, hence (E®¢, Ef) = d(a—p)0 = dap- So, the

operator R extends to a map in bL(H) satisfying condition (3) of Proposition 5. Therefore, X is a Riesz
basis. O

Theorem 12. Let ¢, f € Ly(IR). Then f € S(¢) iﬁ”]?: 7'(5 for some 2m-periodic function .



