Amos Ron Lectures Notes, Math887 03may03 Prepared by Olga Holtz (then messed up by Carl de Boor) ©2003

Lecture 3: Representation and bases in Hilbert spaces

Let H be a separable Hilbert space and let $X \subset H$ be a countable subset that is **fundamental**, i.e., $\operatorname{span}(X) = H$. One often wants to be able to express the elements h of H as linear combinations $h = \sum_{x \in X} c_h(x)x$ of elements of X. For this representation to be useful, there must be (1) a good way to compute the coefficients $(c_h(x))_{x \in X}$ form the vector h, (2) a good way to reconstruct h from its coefficients $(c_h(x))_{x \in X}$, (3) the coefficients $(c_h(x))_{x \in X}$ must "tell the story", i.e., reflect properties of h so that one would gain by working with the coefficients rather than with the vector h itself, and (4) X cannot contain many essentially different elements (put positively, the elements in X should be obtainable from a few "atoms" by simple operations like translation, multiplication by some functions, and dilation).

Definition 1. The linear map

$$T_X: \ell_2(X) \to H: c \mapsto \sum_{x \in X} c(x)x$$

is called the synthesis operator.

This definition may not make sense without further assumptions. Observe, however, that the action of T_X on sequences with finite support, i.e., on the linear space

$$\ell_0(X) := \{ c \in \mathbb{C}^X : \# \operatorname{supp} c < \infty \}$$

is well defined, and $\ell_0(X)$ is dense in $\ell_2(X)$, hence T_X is always densely defined. If, in addition, $||T_X|_{\ell_0(X)}|| < \infty$, one can (uniquely) extend $T_X|_{\ell_0(X)}$ to all of $\ell_2(X)$, preserving its norm, and call this extension T_X . For this reason, one makes the following

Definition 2. X is called a Bessel system if $T_X|_{\ell_0(X)}$ is bounded (and then T_X is defined on all of $\ell_2(X)$).

Example 3. Let $\phi \in L_2(\mathbb{R})$, $X := E(\phi) := (E^j \phi)_{j \in \mathbb{Z}}$, and $H := S(\phi) := \overline{\operatorname{span}(E(\phi))}$ (here, of course, the closure is taken in the topology of $L_2(\mathbb{R})$).

Exercise 1. In Example 3, $E(\phi)$ is Bessel if and only if $[\hat{\phi}, \hat{\phi}] \in L_{\infty}(\mathbb{R})$. Moreover, $||T_X||^2 = ||[\hat{\phi}, \hat{\phi}]||_{L_{\infty}(\mathbb{R})}$. Here,

$$[f,g] := \sum_{\alpha \in 2\pi \mathbb{Z}} E^{\alpha} f \, \overline{E^{\alpha}g} = \sum_{\alpha \in 2\pi \mathbb{Z}} E^{\alpha}(f\overline{g}) \qquad \forall f,g \in L_2(\mathbb{R})$$

is the **bracket product** of f and g, i.e., the 2π -periodization of $f\overline{g}$.

Note that, if ϕ , $\psi \in L_2(\mathbb{R})$, then $\hat{\phi}$, $\hat{\psi} \in L_2(\mathbb{R})$, hence $\widehat{\phi\psi} \in L_1(\mathbb{R})$, hence $[\hat{\phi}, \hat{\psi}]$ is the L_1 -limit of the sum $\sum_{\alpha \in 2\pi\mathbb{Z}} E^{\alpha}(\widehat{\phi\psi})$, hence in $L_1(\mathbb{T})$. This is useful information since, at least for any finitely supported c, $(T_{E(\phi)}c)^{\wedge} = \sum_j c(j)(\phi(\cdot - j))^{\wedge} = \sum_j c(j)e_{-ij}\hat{\phi}$, therefore

$$(T_{E(\phi)}c)^{\wedge} = \widehat{c}\phi,$$

with the 2π -periodic function

$$\widehat{c} := \sum_{j} c(j) e_{-\mathrm{i}j}$$

the discrete Fourier transform of the sequence c. Therefore, by the Plancherel identity and elementary properties of the Fourier transform, at least for any finitely supported c and d,

(4)
$$\langle T_{E(\phi)}c, T_{E(\psi)}d\rangle = \frac{1}{2\pi} \langle \widehat{c}\widehat{\phi}, \widehat{d}\widehat{\psi}\rangle = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{c}\overline{\widehat{d}}\widehat{\phi}\overline{\widehat{\psi}} = \frac{1}{2\pi} \int_{\mathbb{T}} \widehat{c}\overline{\widehat{d}}[\widehat{\phi}, \widehat{\psi}].$$

In particular, with $c = \delta_0$, $d = \delta_j$, we find that

$$\langle \phi, \psi(\cdot - j) \rangle = \frac{1}{2\pi} \int_{\mathbb{T}} e_{ij}[\widehat{\phi}, \widehat{\psi}] = [\widehat{\phi}, \widehat{\psi}]^{\wedge}(-j).$$

As a corollary to this formula, we have: $[\hat{\phi}, \hat{\psi}] = 1$ a.e. iff $\langle \phi, E^j \psi \rangle = \delta_{i0}$.

Exercise 1.1 Use Exercise 1 to prove that $E(\phi)$ is Bessel in case ϕ decays 'mildly' at ∞ , and also in case ϕ is 'mildly smooth'. Quantify, for each case, the notion of 'mild decay' and 'mild smoothness'.

Observation: For any $R \in bL(H)$, $RT_X = T_{RX}$, since both sides are bounded linear maps that agree on the fundamental set X (since, for any $x \in X$, $RT_X\delta_x = Rx = T_{RX}\delta_x$).

Proposition 5. Let X be a Bessel system. Then TFAE:

(1) T_X is bounded below, i.e., $\inf_{c\neq 0} ||T_X c||_H / ||c||_{\ell_2(X)} > 0.$

- (2) ran T_X is closed and ker $T_X = \{0\}$.
- (3) There exists $R \in bL(H)$ s.t. $\langle Rx, x' \rangle = \delta_{xx'} \quad \forall x, x' \in X$.

 $(1) \iff (2)$ This equivalence holds for any bounded linear map T from a Banach space to a **Proof:** Banach space.

 $(2) \Longrightarrow (3)$ Since ran $T_X = \overline{\operatorname{ran} T_X} \supseteq \overline{\operatorname{span}(X)} = H, T_X$ is onto H. A 1-1 map from a Banach space onto a Banach space is boundedly invertible by the Open Mapping Theorem. So, there exists $T_X^{-1} \in bL(H, \ell_2(X))$. Let $R := (T_X^{-1})^* T_X^{-1}$, where * denotes the adjoint of an operator. Then $R \in bL(H)$ and $\langle Rx, x' \rangle_H = \langle T_X^{-1} x, T_X^{-1} x, T_X^{-1} x, T_X^{-1} x' \rangle_{\ell_2(X)} = \langle \delta_x, \delta_{x'} \rangle_{\ell_2(X)} = \delta_{xx'}$. (3) \Longrightarrow (1) The bi-orthogonality condition in (3) states that, for any $x, x' \in \delta_{xx'} = \langle Rx, x' \rangle = \langle T_{RX} \delta_x, T_X \delta_{x'} \rangle$

 $\langle \delta_x, T^*_{RX} T_X \delta_{x'} \rangle$, hence

 $T_{BX}^*T_X = \mathrm{id}$

on $\ell_0(X)$. Since T_X is bounded, so is $T_{RX} = RT_X$, hence so is T^*_{RX} , and so, the above identity extends to all of $\ell_2(X)$. This means that T_X has a bounded left inverse, hence must be bounded below.

Exercise 2. The dual system RX is unique (since X is fundamental for H).

Definition 6. A Bessel set $X \subset H$ is called a Riesz basis (or a stable basis) if the conditions (1)–(3) above are satisfied.

Definition 7. The map $T_X^*: H \to \ell_2(X): h \mapsto (\langle h, x \rangle : x \in X)$ is the analysis operator.

This definition may not make sense for an arbitrary $X \subset H$, since the sequences $(\langle h, x \rangle : x \in X)$ do not have to lie in $\ell_2(X)$. However,

Exercise 3. If $T_X \in bL(\ell_2(X), H)$ or $T_X^* \in bL(H, \ell_2(X))$, then both maps are bounded, have the same norm, and T_X^* is the adjoint of T_X . Also (given that X is fundamental), T_X^* is 1-1. The following is standard.

Proposition 8. Suppose H_1 , H_2 are Hilbert spaces and $T \in bL(H_1, H_2)$. Then ran T is closed in H_2 if and only if ran T^* is closed in H_1 . If this is the case, then T is 1-1 iff T^* is onto.

Proposition 9. Let $\phi \in L_2(\mathbb{R})$ be compactly supported, $X := E(\phi)$, and $H := S(\phi) \subseteq L_2(\mathbb{R})$. TFAE: (1) $E(\phi)$ is a Riesz basis for H.

(2) $[\hat{\phi}, \hat{\phi}]$ vanishes nowhere in \mathbb{R} .

(3) $\hat{\phi}$ does not have a real 2π -periodic zero.

Remark: The assumption on ϕ implies that $\hat{\phi}$ is entire and, since $\langle \hat{\phi}, e_{-ij} \hat{\phi} \rangle = [\hat{\phi}, \hat{\phi}]^{\vee}(j) = 0$ for all but finitely many $j \in \mathbb{Z}$, $[\hat{\phi}, \hat{\phi}]$ is equal a.e. to a trigonometric polynomial.

Exercise 4. Prove that $\sum_{\alpha \in 2\pi \mathbb{Z}} E^{\alpha} |\hat{\phi}|^2$ converges uniformly on compact sets, hence $[\hat{\phi}, \hat{\phi}]$ is equal to that trigonometric polynomial *everywhere*. Prove the equivalence of (2) and (3).

Remark: With that, by (4), $||T_{E(\phi)}c||^2 = \frac{1}{2\pi} \int_{\mathbb{T}} |\hat{c}|^2 [\hat{\phi}, \hat{\phi}] \ge \inf[\hat{\phi}, \hat{\phi}] ||c||^2$, for any finitely supported c. Since $[\hat{\phi}, \hat{\phi}]$ is continuous (and ℓ_0 is dense in ℓ_2), this shows that (2) \Longrightarrow (1), while if $[\hat{\phi}, \hat{\phi}](\theta) = 0$, then $[\hat{\phi}, \hat{\phi}] = O(\varepsilon)$ on $B_{\varepsilon}(\theta)$, hence $||T_{E(\phi)}c_{\varepsilon}||^2 = O(\varepsilon)$ with c_{ε} chosen to have $||c_{\varepsilon}|| \sim 1$ yet \hat{c}_{ε} small off $B_{\varepsilon}(\theta)$ (e.g., $\hat{c}_{\varepsilon} = D_{\lceil 1/\varepsilon \rceil}(\cdot - \theta)$, the θ -translate of a Dirichlet kernel), thus proving (1) \Longrightarrow (2).

Proof: (1)=>(2) Suppose that $[\widehat{\phi}, \widehat{\phi}](\theta) = 0$ for some $\theta \in \mathbb{R}$ (WLOG, $\theta \in \mathbb{T}$, since $[\widehat{\phi}, \widehat{\phi}]$ is 2π -periodic). For any $\varepsilon > 0$, define $\chi_{\varepsilon} := \chi_{B_{\varepsilon}(\theta)+2\pi\mathbb{Z}}$, where $B_r(x)$ denotes the ball of radius r centered at x. Let $c_{\varepsilon} := \frac{1}{2\pi} \left((\chi_{\varepsilon}|_{\mathbb{T}})^{\wedge}(\alpha) \right)_{\alpha \in \mathbb{Z}}$. Then

(10)
$$\|\chi_{\varepsilon}\|_{\mathbb{T}}^{2}\|_{L_{2}(\mathbb{T})}^{2} = 2\pi \|c_{\varepsilon}\|_{\ell_{2}(X)}^{2}$$

On the other hand,

$$(T_X c_{\varepsilon})^{\wedge} = \left(\sum_{j \in \mathbb{Z}} c_{\varepsilon}(j) E^j \phi\right)^{\wedge} = \sum_{j \in \mathbb{Z}} c_{\varepsilon}(j) e_{-\mathrm{i}j} \widehat{\phi} = \chi_{\varepsilon} \widehat{\phi}$$

since $\sum_{j \in \mathbb{Z}} c_{\varepsilon}(j) e_{-ij} |_{\mathbb{T}} = \chi_{\varepsilon} |_{\mathbb{T}}$. Therefore,

(11)
$$2\pi \|T_X(c_{\varepsilon})\|_{L_2(\mathbb{R})}^2 = \|(T_Xc_{\varepsilon})^{\wedge}\|_{L_2(\mathbb{R})}^2 = \|[\chi_{\varepsilon}\widehat{\phi},\chi_{\varepsilon}\widehat{\phi}]|_{\mathbb{T}}\|_{L_1(\mathbb{T})} = \|(\chi_{\varepsilon}[\widehat{\phi},\widehat{\phi}])|_{\mathbb{T}}\|_{L_1(\mathbb{T})}$$
$$\|[\widehat{\phi},\widehat{\phi}]|_{B_{\varepsilon}(\theta)}\|_{L_1(\mathbb{T})} \le \|[\widehat{\phi},\widehat{\phi}]|_{B_{\varepsilon}(\theta)}\|_{L_{\infty}(B_{\varepsilon}(\theta))}\|\chi_{\varepsilon}|_{\mathbb{T}}\|_{L_1(\mathbb{T})} = \|[\widehat{\phi},\widehat{\phi}]|_{B_{\varepsilon}(\theta)}\|_{L_{\infty}(B_{\varepsilon}(\theta))}\|\chi_{\varepsilon}|_{\mathbb{T}}\|_{L_2(\mathbb{T})}^2.$$

Combining (10) and (11), we get

$$\inf_{c \in \ell_2(X)} \frac{\|T_X c\|}{\|c\|} \le \inf_{\varepsilon > 0} \|[\widehat{\phi}, \widehat{\phi}]|_{B_\varepsilon(\theta)}\|_{L_\infty(B_\varepsilon(\theta))}^{1/2} = 0,$$

since $[\hat{\phi}, \hat{\phi}](\theta) = 0$ and $[\hat{\phi}, \hat{\phi}]$ is continuous. But this means that condition (1) of Proposition 5 is violated, so X is not a Riesz basis.

 $(2)\Longrightarrow(1) \text{ Since } [\widehat{\phi},\widehat{\phi}] \text{ is a continuous non-vanishing periodic function, } [\widehat{\phi},\widehat{\phi}]^{-1} \in L_{\infty}(\mathbb{R}), \text{ hence } \frac{\widehat{\phi}}{[\widehat{\phi},\widehat{\phi}]} \in L_{2}(\mathbb{R}) \text{ and } \psi := \left(\frac{\widehat{\phi}}{[\widehat{\phi},\widehat{\phi}]}\right)^{\vee} \in L_{2}(\mathbb{R}). \text{ Note that } [\tau f,g] = \tau[f,g] \text{ for any } f, g \in L_{2}(\mathbb{R}) \text{ and a } 2\pi\text{-periodic function } \tau \text{ s.t. } \tau f \in L_{2}(\mathbb{R}). \text{ Consequently,}$

$$[\widehat{\psi},\widehat{\psi}] = [\frac{\widehat{\phi}}{[\widehat{\phi},\widehat{\phi}]}, \frac{\widehat{\phi}}{[\widehat{\phi},\widehat{\phi}]}] = \frac{[\widehat{\phi},\widehat{\phi}]}{[\widehat{\phi},\widehat{\phi}]^2} = \frac{1}{[\widehat{\phi},\widehat{\phi}]} \in L_{\infty}(\mathrm{I\!R}),$$

so, by Exercise 1 again, $E(\psi)$ is Bessel. By Theorem 12 (to be proved in the nearest future), $E(\psi) \subseteq H$. Let $R: E(\phi) \to H: E^{\alpha}\phi \mapsto E^{\alpha}\psi$. Show that $RX = E(\psi)$ is the dual system for X. Indeed, $[\hat{\phi}, \hat{\psi}] = [\hat{\phi}, \frac{\hat{\phi}}{[\hat{\phi}, \hat{\phi}]}] = 1$, so, by the remark preceding Proposition 5, $\langle \phi, E^{\alpha}\psi \rangle = \delta_{\alpha 0}$, hence $\langle E^{\alpha}\phi, E^{\beta}\psi \rangle = \delta_{(\alpha-\beta)0} = \delta_{\alpha\beta}$. So, the operator R extends to a map in bL(H) satisfying condition (3) of Proposition 5. Therefore, X is a Riesz basis.

Theorem 12. Let ϕ , $f \in L_2(\mathbb{R})$. Then $f \in S(\phi)$ iff $\hat{f} = \tau \hat{\phi}$ for some 2π -periodic function τ .