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Lecture 4: Frames

If X is a Riesz basis, then Tx is boundedly invertible, hence so is its adjoint, and this implies that
TxT% is invertible. Setting, as we did in the previous lecture,

R:= (TxT%)™ !,

and noticing that R is self-adjoint, hence T% R = (RTx)* = T}, x, we see that idg = TxT%x R = TxT};x and
so obtain the expansion

h=TxThxh=Y (h,Rz)z Vhe H.
rzeX

So, provided we know that T'x T is boundedly invertible and have in hand its inverse, R, we have a way
to represent any vector i in H as a linear combination of vectors in X with easily computable coefficients.
This gives a useful generalization of the notion of a Riesz basis.

Theorem 1. Let H be a Hilbert space and let X C H be a Bessel system for H. Then TFAE
(1) T% is bounded below.
(2) ranT% is closed.
(3) There exists a Hilbert space H' O H and a map R: X — H' s.t.
(i) Trx : ¢+ >, cx c(z)Rx is bounded (on £o(X) hence on £3(X));
(i) Ty T}y = id on H.

Proof: First note that ker T% = {0} since X is fundamental in H (that is hidden in the definition
of ‘a Bessel system for H’). Further, it is true of any two Banach spaces Xi, X3 that the conditions (i)
“A is bounded below” and (ii) “ker A = {0} and ran A is closed” are equivalent for a map A € bL(X1, X32).
(We already used this in Proposition 5 of Lecture 3.) So, since ker T% is trivial, and both ¢3(X) and H are
Banach spaces, (1) and (2) are equivalent.

(1)==(3) We only need to show that TxT% is boundedly invertible since then, by the above discussion,
R = (TxT%)~ ! does the job. In particular, R being bounded, so is Trx = RTx, i.e., RX is Bessel. For
that, by assumption, K := infy, |T%h|| /|||l is positive. Since

(TxTxh h)| _ | TxR]?
il il

ITxTxh| = > K*||n|| Vhe H,

also the map T'yT% is bounded below, hence its kernel is trivial and its range is closed. But since it is
self-adjoint, the closure of its range is the orthocomplement of its kernel, hence, all of H. In other words,
Ty T% is boundedly invertible.

(3)==(1) Since TpxT% = (T'xT}x)" =id* =id, the map T% is bounded below (with K = 1/|Trx|| >
0 by (i)). O



Definition 2. A Bessel system X C H is called a frame if the conditions (1)-(3) of Theorem 1 above are
satisfied.

Remark: The dual system RX constructed in the above proof is the unique system in H for which the
projector Thy Ty = T% R*Tx = T%(TxT%) 'Tx is self-adjoint, hence orthogonal, hence the orthoprojector
onto ranT%, and its kernel is ker Tx. However, unless X is a Riesz basis, there are other dual frames in H
for X. Note that we could have introduced a super-space H' in Proposition 5 of Lecture 3 without changing
the conclusion of that proposition or its proof.

Exercise. Let R be the map constructed in the proof of Theorem 1. Given h € H, prove that Ty h has
the least norm among all representation of h as a combination of X.

Example 1. Let X := {z1,...,2,} C R™, m <n. Then Ty = [z1,...,2,] € R™*" is a frame iff
TxT" = Lyxm for some T” € R™™™ iff the rows of the map Ty are linearly independent iff rank T'y = m.
Theorem 3. Let ¢ € Lo(IR). The system E(¢) is a frame (for S(¢)) iff

(i) [¢, 9] € Loo(R); and o
(ii) [, ¢]7" € Loo () with Qg := supple, o).
Proof: First note that

(4) (T T )" = 1010 Yo,0,f € La(R)  st. [f,9]6 € La(R).
Indeed, N
(Tew To ) = Z BB | = S Ee 6 = IF, 09,
S/ JEXL

since ) ez (f, Eiy)e_;; is the Fourier series of [f, ] (cf. Lecture 3).

= If E(¢) is a frame, then, in particular, it is Bessel, so [qS d)} € Lo (IR) by Exercise 1 of Lecture 3.
By Theorem 12 of Lecture 3, for any f € S(¢), f = 76 for some 2m-periodic 7, hence, from (4),

/\

1 P ~ o~ ~
5017 = Tt Tin . ) = 5= [ (10007 = 3= [ 170 = 5- [ rlo.alp

Fore > 0,let Q. :={£ €T : [(5, &](f) < ¢}. By Theorem 12 of Lecture 3, f given implicitly by f: X, 4277?

is in S(9). Also, If2 = ZIFIP = & fo 16 8], while [T fI2 = & Jy IIF 0P = £
||TE(¢ flI? < ellf|I?. Since T*(¢) is bounded below, this implies that meas ). = 0 for some € > 0.
<= Suppose the conditions (i) and (ii) hold. Define a function 1 by

~ e .
D(w) = {(5$$] (w) fweQy

otherwise.

6, 6]|2, hence

This definition makes sense since, by (ii), the right hand side is in Ly(IR), so its inverse Fourier transform
is defined and also lies in Ly(IR). Note also that, by Theorem 12 of Lecture 3, ¢ € S(¢). Let f € S(¢). By

that theorem, f = 7¢ for some 27-periodic 7, hence (4) implies

T Tpw)f o=, ==]p = ==o,dlo=Td=f
(Te () E(¢) )t =1 ] [T B ¢]] [¢7¢][ ] T
Thus, TE(¢)TE(1/;) =1id on S(¢); by Theorem 1, E(¢) is a frame.
Example.

Let U be a measurable subset of T and let ¢ := x;;. Then [;ﬁ\, 5] = jemXxv(-—2mj) € Loo(IR) and

[a, a]_l € Loo(U + 277Z), so E(¢) is a frame. However, E(¢) is a Riesz basis only if U = T, according to
Proposition 8, part 2, of Lecture 3.
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