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Lecture 6: Linear independence of E(φ)

Let Q be the space CZZ with the topology of pointwise convergence, i.e., with the topology given by
the seminorms ‖q‖(n) := max|j|≤n |q(j)|, for n ∈ IN. Given a compactly supported function φ, let S∗(φ)
denote the range of φ∗′ as a map on Q, i.e., the space of all linear combinations

∑
j∈ZZ c(j)E

jφ with
complex coefficients. There is no problem of pointwise convergence of such sums since, for any point x ∈ IR,
only finitely many terms of the sum are nonzero at x. We say that the shift sequence E(φ) is linearly
independent (LI) if φ∗′ is injective (on Q).

Exercise 1. For a compactly supported φ, the map (φ∗′)|l2(ZZ) is always injective.

Exercise 2. The space Q is Fréchet, the pairing

`0 ×Q 3 (p, q) 7→
∑
j∈ZZ

p(j)q(j)

makes `0 := `0(ZZ) into the continuous dual of Q and Q an algebraic dual of `0. It follows from the
general Hahn-Banach theorem that (K⊥)⊥ = K (where, for sure, K⊥ := {p ∈ `0 : (p, q) = 0 ∀q ∈ K},
(K⊥)⊥ := {q ∈ Q : (p, q) = 0 ∀p ∈ K⊥}) for any closed linear subspace K of Q.

Theorem 1. Let φ be a compactly supported distribution (hence φ̂ is entire). Then E(φ) is LI iff φ̂ does
not have a 2π-periodic zero in C.

Proof: “=⇒” By Theorem 2.6 of Lecture 2, φ̂|θ+2πZZ = 0 iff φ ∗′ eiθ = 0, so if φ̂ has a 2π-periodic
zero in C, then the map φ∗′ is not injective.

“⇐=” Suppose K := ker(φ∗′) 6= {0}. Then K is a closed linear subspace of Q, therefore K = (K⊥)⊥.
Since φ ∗′ (Ec) = E(φ ∗′ c), K is shift-invariant, hence K⊥ is a shift-invariant subspace of `0. Let

K⊥
+ := {p∨ :=

∑
j∈ZZ

p(j)()j : p ∈ K⊥, p(j) = 0 ∀j < 0}.

K⊥
+ is a linear subspace of Π. Further, since ()1p∨ = (Ep)∨, K⊥

+ is closed under multiplication by polynomi-
als, hence an ideal in Π. Since the ring Π is a principal ideal domain, we have K⊥

+ = p∨0 Π for some p∨0 ∈ Π.
Therefore,

K⊥ = span(E(p0)).

In particular, if p∨0 were a monomial, then p0 = δj0 for some j0 ∈ ZZ, so K⊥ = `0, hence K = (K⊥)⊥ = {0}.
Contradiction! So, p∨0 is not a monomial and, therefore, has a nonzero root, ξ say. Then 0 = p∨0 (ξ) =∑

j∈ZZ p0(j)ξj =: (p0, ξ
ZZ), therefore

0 = ξk(p0, ξ
ZZ) = (Ekp0, ξ

ZZ) ∀k ∈ ZZ.

But this says that ξZZ ⊥ K⊥, hence ξZZ ∈ K and, choosing θ ∈ C so that ξ = eiθ (since ξ 6= 0, can always
solve this equation), we are done, by Theorem 2.6 of Lecture 2.
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The above theorem shows that, for a compactly supported function φ ∈ L2(IR), the condition “E(φ) is
LI” is stronger than “E(φ) is a Riesz basis of S(φ)”.

Example 2. If φ := χ[0..1], then the set of zeros of φ̂ : ω 7→ 1−e−iω

iω is 2πZZ \ {0}, so E(φ) is LI
(and is a Riesz basis). For ψ := χ[0..2], its Fourier transform ψ̂ : ω 7→ 1−e−2iω

iω has a 2π-periodic real zero
π + 2πZZ, so E(ψ) is not a Riesz basis (and not LI). Finally, if η := χ[0..1] + βχ[1..2] for some |β| < 1, then
η̂ : ω 7→ (

1 + βe−iω
)

1−e−iω

iω has a 2π-periodic complex zero but no 2π periodic real ones, so E(η) is a Riesz
basis but not LI.

Factorization of generators for local PSI spaces. Local PSI spaces were defined in Lecture 1 as
the spaces where compactly supported functions are dense. Here we shall use an equivalent definition: a PSI
space is local if it has a compactly supported generator. The following lemma shows that in such spaces one
can always replace a “bad” generator (whose shift sequence is not LI) by a “good” one (whose shift sequence
is LI).

Lemma 3. Let φ 6= 0 be a distribution with suppφ ⊆ [a . . b], a and b finite. Then there exists a distribution
ψ ∈ S∗(φ) s.t.
(i) φ is finitely spanned by E(ψ), i.e., φ is a finite linear combination of the shifts of ψ.
(ii) E(ψ) is LI.
(iii) suppψ ⊆ [a . . b− dim ker(φ∗′)].

Remark: (iii) says, in particular, that dimker(φ∗′) <∞.
Proof: Assume that E(φ) is not LI (otherwise ψ := φ possesses all the desired properties). Then,

by Theorem 2.6 of Lecture 2, φ ∗′ eiθ1 = 0 for some θ1 ∈ C. Define

(4) φ1 :=
∞∑

j=0

eijθ1Ejφ (= −
−1∑

j=−∞
eijθ1Ejφ)

and observe that E1φ1 =
∑∞

j=0 eijθ1Ej+1φ = e−iθ1

(∑∞
j=1 eijθ1Ejφ

)
, hence φ1 − eiθ1φ1 = φ, so φ is a

combination of two shifts of φ1. Since suppEjφ ⊆ [a+ j . . b+ j], the first equality of (4) implies suppφ1 ⊆
[a . . +∞) and the second equality that suppφ1 ⊆ (−∞ . . b − 1]. So, suppφ1 ⊆ [a . . b − 1]. Repeat this
procedure to get φ2, . . ., φn =: ψ with E(φn) LI (such an n always exists and does not exceed b − a,
since suppφj ⊆ [a . . b − j] and since the condition supp ν ⊆ [a . . a + 1) implies the linear independence of
E(ν); – see Lemma 2.1 of Lecture 2). From the construction, φ =

∑n
j=0 a(j)E

jψ for some a ∈ Cn+1 with
a(0) 6= 0 6= a(n). For any c ∈ CZZ, we have

φ ∗′ c =
∑
k∈ZZ

c(k)
n∑

j=0

a(j)Ek+jψ =
∑
k∈ZZ


 n∑

j=0

c(k − j)a(j)


Ekψ,

so if φ ∗′ c = 0, then, by the linear independence of E(ψ),

(5)
n∑

j=0

c(k − j)a(j) = 0 ∀k ∈ ZZ.

This system, for c ∈ Q, has exactly n linearly independent solutions, since, after c(0), . . ., c(n− 1) are fixed,
the equation (5) applied to k = n uniquely determines c(n), then (5) with k = n + 1 uniquely determines
c(n+ 1) and so on; similarly, (5) applied to k = n− 1, n− 2, . . . uniquely determines c(−1), c(−2) etc. So,
dimker(φ∗′) = n, which completes the proof of (iii).
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This lemma says φ = ψ ∗′ c with # supp c < ∞ and E(ψ) LI, so φ̂ = ĉψ̂ and, by Theorem 1, ψ̂ has no
2π-periodic zeros in C. In other words, after dividing φ̂ by a suitable trigonometric polynomial ĉ whose set
of 2π-periodic zeros is the same as that of φ̂, one obtains a quotient ψ̂ without any 2π-periodic zeros, and
so E(ψ) is LI.

Here is another kind of factorization of the generator φ.

Lemma 6. Suppose φ is a function with suppφ ⊆ [a . . b], a and b finite. If Πk−1 ⊆ S∗(φ), then there exists
a distribution ψ with suppψ ⊆ [a . . b− k] s.t. φ = Bk ∗ ψ.

Proof: First show that φ ∗′ Πk−1 ⊆ Πk−1. Indeed, let p ∈ Πk−1. Then, by the hypothesis of the
lemma, p = φ∗′ cp for some cp ∈ CZZ. However, since, for any j ∈ ZZ, (φ∗′c)(j) = (φ ZZ∗c)(j) = (c∗φ ZZ)(j) =
(c ∗′ φ)(j), we have

φ ∗′ (φ ∗′ cp) = φ ∗′ (cp ∗′ φ) = (φ ∗′ cp) ∗′ φ = p ∗′ φ =
∑

j

Ejp φ(j) ∈ Πk−1

since φ has compact support and each Ejp belongs to Πk−1. Now, let φ0 be the kth distributional derivative
of φ. Then suppφ0 ⊆ suppφ and

φ0 ∗ Πk−1 = (Dkφ) ∗ Πk−1 = Dk(φ ∗ Πk−1) ⊆ DkΠk−1 = {0}.

It follows from the proofs of Theorems 2.5 and 2.6 of Lecture 2 that φ̂0 has a k-fold zero at each α ∈ 2πZZ,
so we can apply the procedure from the proof of Lemma 3 to θ1 = · · · = θk = 0. This gives a sequence
of distributions φ1, . . ., φk s.t. ∆φl = φl−1, suppφl ⊆ [a . . b − l], l = 1, . . . , k. So, ∆kφk = φ0 = Dkφ.
But ∆kφk = B0 ∗ δkφk = Dk(Bk ∗ φk) by the formula (1.3) of Lecture 1 (with B0 the Dirac δ-function), so
Bk ∗ φk − φ ∈ Πk−1. Since both φ and φk have compact support, we get Bk ∗ φk = φ.

Combining Lemma 3 and Lemma 6, we get

Factorization Theorem 7. Let φ be a function with suppφ ⊆ [a . . b], a and b finite. Then there exists
k ∈ ZZ+, c ∈ `0, and a distribution ψ ∈ S∗(φ) with suppψ ⊆ [a . . b− k − dimker(φ∗′)] s.t.
(i) φ = (ψ ∗Bk) ∗′ c,
(ii) Π ∩ S∗(φ) = {0},
(iii) E(ψ) is LI.

Proof: By the proof of Lemma 3, there exists a function (not just a distribution) η ∈ S∗(φ) s.t.
φ is finitely spanned by E(η), E(η) is LI, and supp η ⊆ [a . . b − dim ker(φ∗′)]. Let k := sup{l : η =
Bl ∗ ξ for some distribution ξ with supp ⊆ [a . . b − dimker(φ∗′) − l]} and let ψ ∈ S∗(η)(= S∗(φ)) be s.t.
η = Bk ∗ ψ. If p ∈ Π ∩ S∗(ψ), then, by the shift-invariance of S∗(φ), ∆lp ∈ Π ∩ S∗(φ) ∀l = 0, . . . ,deg p;
since deg ∆lp = deg p− l, the sequence (∆lp)deg p

l=0 is LI, hence Π≤deg p ⊆ S∗(φ). If Π∩S∗(ψ) 6= {0}, then, by
Lemma 6, ψ = B1 ∗ψ1 for some ψ1 with suppψ1 ⊆ [a . . b−dim ker(φ∗′)− k− 1], contrary to the maximality
of k. So, Π ∩ S∗(ψ) = {0}. Since ker(ψ∗′) ⊆ ker(η∗′) and E(η) is LI, so is E(ψ).

One naturally would like that a generator of our PSI space be a distribution with minimal support,
i.e., diam suppφ ≤ diam supp f for any f ∈ S∗(φ). Other nice properties of φ that we want are the linear
independence of its shift sequence and finite spanning of each compactly supported distribution in S∗(φ).
Finally, if the generator ψ of the system E(ψ) dual to E(φ) were a compactly supported infinitely smooth
function, it would facilitate working with the analysis operator. As it turns out, all these properties are
equivalent for a compactly generator of a PSI space. Precisely,

Theorem 8. Given a compactly supported distribution φ, TFAE:
(i) E(φ) is LI.
(ii) There exists ψ ∈ D(IR) s.t. 〈ψ,Ejφ〉 = δj0.
(iii) Each compactly supported distribution f ∈ S∗(φ) is finitely spanned by E(φ).
(iv) φ has minimal support.

(v) φ̂ does not have a 2π-periodic zero in C.

Remark: As usual, D(IR) denotes the Fréchet space of test function and D′(IR) that of distributions.
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Proof: We proved the equivalence of (i) and (v) in Theorem 1.
(i)=⇒(ii) The map φ∗′ : Q → D′(IR) is continuous due to the compact support of φ. The dual of

D′ is D (see, e.g., [1, Theorem XIV, p.75]); the dual of Q can be identified (via the pairing introduced in
Exercise 2) with `0 equipped with the following topology: a sequence (pk) ∈ `IN0 converges to p if #(J :=
∪k∈IN supp pk) < ∞ and pk → p pointwise on J . It follows that (φ∗′)∗ : D(IR) → `0 : f 7→ (〈f,Ejφ〉)j∈ZZ.
Since ran((φ∗′)∗)− = ker(φ∗′)⊥ = {0}⊥ = `0 (check!), there exists ψ ∈ D(IR) s.t. (〈ψ,Ejφ〉)j∈ZZ = (φ∗′)∗ψ =
δ0, and (ii) follows.

(ii)=⇒(iii) If f ∈ S∗(φ) has compact support, then at most finitely many 〈f,Ejψ〉 are nonzero, so
f =

∑
j∈ZZ〈f,Ejψ〉Ejφ is a finite linear combination of E(φ).

(iii)=⇒(iv) If f ∈ S∗(φ) 6= 0 is compactly supported, then f = φ ∗′ c with supp c ⊆ (α, . . . , β) where α,
. . ., β are consecutive integers, c(α) 6= 0, and c(β) 6= 0. If [a . . b] is the minimal closed interval containing
suppφ, then [a+α. . b+β] is the minimal closed interval containing supp f , so diam supp f = b−a+α−β ≥
b− a = diamφ.

(iv)=⇒(i) By Lemma 3, there exists a compactly supported distribution f ∈ S∗(φ) with E(f) LI s.t.
φ = f ∗′ c where # supp c < ∞. As we just saw, this implies diam suppφ = diam supp f + diam supp c − 1,
so diam supp c = 1, i.e., c is a multiple of a delta-sequence. Therefore, E(φ) was originally LI.

Remark: The above proof also shows that the generator with the properties listed in the theorem is
unique up to multiplication by a constant and shifts.

Theorem 9. Let φ be a compactly supported distribution. TFAE:
(i) φ̂ does not have a 2π-periodic zero in IR.
(ii) ker(φ∗′) contains no sequences of slow growth (a sequence c has slow growth if |c(j)| ≤ |p(j)| for some

p ∈ Π).
(iii) φ∗′ is 1-1 on l∞(ZZ).

Proof: (i)=⇒(ii) Let c ∈ ker(φ∗′) be a sequence of slow growth. Then c̃ :=
∑

j∈ZZ c(j)δj is the second
derivative of the continuous function

∑
j∈ZZ c(j)(·−j)+ of slow growth, hence a tempered distribution (see [1,

Theorem VI, p.239]). By the Paley-Wiener Theorem (see [2, Theorem 7.23, p.183]), φ̂ is an entire function
of slow growth, hence ̂̃cφ̂ is a tempered distribution equal to (φ ∗′ c)∧ = 0, hence supp ̂̃c is contained in the
set Z(φ̂) of zeros of φ̂. The distribution ̂̃c is 2π-periodic and so is its support. Since φ̂ has no 2π-periodic
real zeros, this implies supp ̂̃c = 0, hence c̃ = 0, hence c = 0.

(ii)=⇒(iii) Trivial.
(iii)=⇒(i) If φ̂|θ+2πZZ = 0 for θ ∈ IR, then (Theorem 2.6 of Lecture 2) φ ∗′ eiθ = 0. Since eiθ|ZZ ∈ l∞(ZZ),

this finishes the proof.

Final comments. 1. If φ is a compactly supported L2(IR)-function, then we could add two more
equivalent conditions to the previous theorem: (iv) E(φ) is a Riesz basis, (v) E(φ) has a dual basis E(ψ)
with ψ a function exponentially decaying at ±∞.

2. Here is a brief summary on the bracket product. With φ and ψ ∈ L2(IR), [φ̂, φ̂] = 1 iff E(φ) are
orthonormal; [φ̂, ψ̂] = 1 iff E(φ) and E(ψ) are biorthonormal; [φ̂, ψ̂] = 0 iff S(φ) ⊥ S(ψ).

3. A similar, though more sophisticated, theory exists for finitely generated shift-invariant (FSI) spaces
with more than one generator. Time does not permit us to go into pertinent details. If, later on, we need
results from FSI space theory, they will be stated and the reader referred to the corresponding literature.
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