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Effects of finite precision arithmetic on numerical algorithms:
Roundoft errors.
Data uncertainty.

Key concepts:
Conditioning: it measures the sensibility of solutions to perturbations
of data.

Growth factor: it measures the relative size of the intermediate
computed numbers with respect to the initial coefficients or to the final
solution.

Backward error: if the computed solution is the exact solution of a
perturbated problem, it measures such perturbation.

Forward error: it measures the distance between the exact solution and
the computed solution.

(Forward error) < (Backward error) x (Condition)



Growth factor
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pWV associated with partial pivoting of an n x n matrix is bounded above
by 2™. p? associated with complete pivoting of an n x n matrix is “usually”
bounded above by n.

Gauss elimination of a symmetric positive definite matrix (without row
or column exchanges) presents p/V = 1.

Amodio and Mazzia have introduced the growth factor
maxy, ||A®) ||

Pl = =)

P. Amodio, F. Mazzia: A new approach to backward error analysis of
LU factorization, BIT 39 (1999) pp. 385-402.




Condition number

k(A) = [|Afloo [A7 oo

The Skeel condition number:
Cond(A) = || A7 [JA] [l

e Cond(A) < k(A)
e Cond(DA) = Cond(A) for any nonsingular diagonal matrix D

Accurate calculation: the relative error is bounded by O(e), where ¢
is the machine precision.

Admissible operations in algorithms with high
relative precision: products, quotients, sums of numbers of the same sign
and sums/subtractions of exact data:

The only forbidden operation is true subtraction, due to possible
cancellation in leading digits.



A nonsingular matrix A with positive diagonal elements and nonpositive
off-diagonal elements is an M-matrix if A=! > 0.

A matrix is totally positive if all its minors are nonnegative.

In order to guarantee accurate computations for some special classes of
matrices, it is crucial to find an adequate parametrization of the special
classes of matrices:

e For diagonally dominant M-matrices: the off-diagonal entries and the
rOwW sums.

e For nonsingular totally positive matrices: the multipliers of its Neville
elimination.



basis u = (ug,...,uy,) of a real vector space U of functions defined on
a subset K of R® and a function f € U,

n

1=0

We want to know how sensitive a value f(x) is to any perturbations
of a given maximal relative magnitude ¢ in the coefficients cg,...,c,
corresponding to the basis. The corresponding perturbation §f(z) of the
change of f(x) can be bounded by means of a condition number

Cu(f, ) = Z\cm(l‘)\,

for the evaluation of f(x) in the basis u:

0f(x)] < Cu(f(x))e.



R. T. Farouki & V. T. Rajan (1988): On the numerical condition of
polynomials of algebraic curves and surfaces 1. Implicit equations. Comput.
Aided Geom. Design 5, 215-252.

Farouki, R. T. & Goodman, T. N. T. (1996): On the optimal stability
of Bernstein basis. Math. Comp. 65, 1553—1566.

Relative condition number:

Cu(fix) [ Dl lciui(w)]
£ ()] <_ > im0 Cz'uz'(ﬂf)\)

co(f,x) =



Let f(x) be the computed value wit floating point arithmetic.
n
fla) =Y cus(a).

1=0

Backward error analysis provides bounds for

<l
Forward error analysis provides bounds for
[f () — f(2)]

(Forward error) < (Backward error) x (Condition)



The mnatural partial order for real-valued functions induces a
corresponding partial order on the bases for i/, via

uw =v ifand only if Cy(f,t) < Cy(f,t), VfelU, Vt € 1.

Given a set B of bases of bases of a vector space U of functions defined
on I, we say that a basis b € B is optimally stable for the evaluation of
functions among all bases of B if it is minimal with respect to this partial
order among all bases in B. We shall consider the set 5 of bases of U/ formed
by functions with constant sign (i.e., each basis function is either nonnegative
or nonpositive).

Theorem. The normalized B-bases are optimally stable.

Extension of optimally stable bases beyond total positivity context.



For spaces of univariate functions:

P. J.M.: “On the optimal stability of bases of univariate functions”
(2002). Numerische Mathematik 91, pp. 305-318.

P. J.M.: “A note on the optimal stability of bases of univariate
functions” (2006). Numerische Mathematik 103, pp. 151-154.

For spaces of multivariate functions:

LYCHE T., P. J.M.: “Optimally stable multivariate bases” (2004).
Advances in Computational Mathematics 20, pp. 149-159.

The tensor product b™™ of Bernstein bases is optimally stable on
[0, 1] x [0, 1].
The tensor product of B-splines bases is optimally stable.
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The Bernstein basis B of multivariate polynomials defined on a triangle
(resp., tetrahedron) is optimally stable.

The error analysis of the corresponding evaluation algorithms performed
in:
MAINAR E., P. J.M.: “Running error analysis of evaluation algorithms

for bivariate polynomials in barycentric Bernstein form” (2006). Computing
77, 97-111.

MAINAR E., P. J.M.: “Evaluation algorithms for multivariate
polynomials in Bernstein Bézier form” (2006). Journal of Approximation
Theory 143, 44-61.

DELGADO J., P. J.M.. “Error analysis of efficient evaluation
algorithms for tensor product surfaces” (2008). Journal of Computational
and Applied Mathematics 219, pp. 156-169.
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Rational Bézier surfaces

Given the double-index o = ajag, with 0 < a1 < m, 0 < as < n, we
can define the corresponding basis function

wa b, () b3, ()
;nl =0 ZZQZO Wey bqu’éﬂbl (:U) bgg (y)

To(T,y) = >

The previous basis is optimally stable.

DELGADO J., P. J.M.: “A Corner Cutting Algorithm for Evaluating
Rational Bézier Surfaces and the Optimal Stability of the Basis” (2007).
SIAM J. Scient. Comput. 29, pp. 1668-1682.

The usual method to evaluate rational Bézier surfaces uses the
projection operator. In contrast, we propose a new evaluation method such
that allsteps are convex combinations. It is a robust algorithm with optimal
growth factor.
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Both previous algorithms are more stable than evaluation algorithms of
nested type and with lower complexity which have also been considered.

We have also analyzed the running error analysis of the projection
and the new evaluation algorithm. A posteriori error bounds are
calculated simultaneously with the evaluation algorithm without increasing
the computational cost considerably.

DELGADO J., P. J.M.: “Running Relative Error for the Evaluation
of Polynomials” (2009). SIAM Journal on Scientific Computing 31 , pp.
3905-3921.

DELGADO J., P. J.M.: “Running error for the evaluation of
rational Bézier surfaces” (2010). Journal of Computational and Applied
Mathematics 233, pp. 1685-1696.

DELGADO J., P. J.M.: “Running error for the evaluation of rational
Bézier surfaces through a robust algorithm”. Journal of Computational

and Applied Mathematics (2011). Journal of Computational and Applied
Mathematics 235, pp. 1781-1789.
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Are the rational tensor product systems derived from the Bernstein
basis monotonicity preserving?

The answer is negative even for m =n = 1.

DELGADO J., P. J.M.: “Are rational Bézier surfaces monotonicity
preserving?” (2007). Computer Aided Geometric Design. 24, pp. 303-306.
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Triangular rational Bézier surfaces and monotonicity preservation

The Bernstein polynomials of degree n on a triangle, (bf');=, are
defined by b (1) = m#"w' " T T2, |i| = n.
Now let us consider the rational Bernstein basis of order n (¢;)|ij=n
given by ¢; = wi by’
Z|i|:

i
w;i b’
n 1

where (wj);=p is a sequence of positive weights.

The previous basis is optimally stable.

DELGADO J., P. J.M.: “On the evaluation of rational triangular
Bézier surfaces and the optimal stability of the basis” (2013). Advances
in Computational Mathematics 13, pp. 701-721.
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Is the rational Bernstein basis axially monotonicity preserving?
The answer is negative up to the polynomial case.
THEOREM. If a rational Bernstein basis on a triangle with positive

weights is axially monotonicity preserving, then w; = wj for all i, j such that
i| = [j| =n.
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Mixed spaces

U, = (1,...,t" % cosh(wt),sinh(wt))
U, = (1,...,t" 2 cos(wt), sin(wt))

MAINAR E., P. J.M.: “Optimal Bases for a class of mixed spaces and
their associated spline spaces” (2010). Computers and Mathematics with
Applications 59, pp. 1509-1523.

The normalized basis (ug p, - .., Un n) of U, can be defined by:

t
UO,n(t) =1 —/ 50,n_1u0,n_1(s)ds,
0
t
ui,n(t) = / (5i_1,n_1ui_1,n_1(s) — 5i’n_1ui,n_1(s)) dS, 1= 1, e — 1,
0

t a
un,n(t) ::/0 5n—1,n—1un—1,n—1(5)dsa 572,71—1 L= 1//0 ui,n—l(s) ds

Optimal stability and shape preserving properties
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Theorem. Let (ugm,...,Um.m) and (Vo n, ..., Unn), m > 1, n > 1,
be two bases defined by the previous recurrences on the intervals [0, a;| and
0, az]. The tensor product blending system

(Wi m ® Vjn)i=0.....m, j=0....n
defined on [0, a1] X [0, as] preserves axial monotonicity.

MAINAR E., P. J.M.: “Monotonicity preserving representations of
non-polynomial surfaces” (2010). Journal of Computational and Applied
Mathematics 233, 2161-2169.
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Theorem. Let (uom,-..,Um.m) and (Von,.--,Vnn), m > 1, n > 1,
be two bases defined by the previous recurrences on the intervals [0, a]
and [0, az]. The tensor product basis (uim ® vjn)i=0,....m, j=0....n defined
on [0,a1] x [0, as] preserves monotonicity with respect to the abscissae
(voy-- -, Vm) and (7, ..., T,) such that

al
vy = 0, Vq;_|_1—l/7;:/ Uim—1(s)ds, 1=0,....,m—1
0

az
0 = 0, Tj_|_1—7'j:/ Vim—1(5)ds, j=0,...,n—1.
0

On the critical length of spaces U,,:
CARNICER J.M., MAINAR E., P. JM.: “On the critical lengths of

cycloidal spaces”. To appear in Constructive Approximation.
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Almost accurate polynomial evaluation in:

J.M. Carnicer, T.N.T. Goodman, J.M. P.: “Roundoftf errors for
polynomial evaluation by a family of formulae” (2008). Computing 82,
pp. 199-215.

Recurrences and evaluation algorithms for multivariate orthogonal
polynomials in:

BARRIO R., P. J.M., SAUER T.. “Three term recurrence for the
evaluation of multivariate orthogonal polynomials” (2010). Journal of
Approximation Theory 162, pp. 407-420.
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Accurate SVDs of diagonally dominant matrices and of some TP matrices

A rank revealing decomposition of a matrix A is a decomposition
A = XDY?T, where X,Y are well conditioned and D is a diagonal matrix.
In that paper it is shown that if we can compute an accurate rank revealing
decomposition then we also can compute (with an algorithm presented there)
an accurate singular value decomposition. Obviously, an LDU-factorization
with L, U well conditioned, is a rank revealing decomposition.

J. Demmel, M. Gu, S. Eisenstat, I. Slapnicar, K. Veselic and Z. Drmac:
Computing the singular value decomposition with high relative accuracy,
Linear Algebra Appl. 299 (1999), 21-80.
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They provided an algorithm for computing an accurate singular
value decomposition from a rank revealing decomposition with a
complexity of O(n?) elementary operations.

Accurate SVDs of diagonally dominant matrices

J. Demmel and P.S. Koev: Accurate SVDs of weakly dominant M-
matrices, Numer. Math. 98 (2004), pp. 99-104.

They present a method to compute accurately an LDU-decomposition
of an n X n M-matrix diagonally dominant by rows. They use
symmetric complete pivoting and so they can guarantee that one of the
obtained triangular matrices is diagonally dominant and the other one has
the off-diagonal elements with absolute value bounded above by the diagonal
element
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J.M. P.: LDU decompositions with L and U well conditioned”.
FElectronic Transactions of Numerical Analysis 18, pp. 198-208.

The m.a.d.d. pivoting strategy is used and so both triangular matrices
are diagonally dominant.

With a low computational cost:

BARRERAS A., P. J.M.: “Accurate and efficient LDU decompositions
of diagonally dominant M-matrices” (2012). FElectronic Journal of Linear
Algebra 24, pp. 153-167.

General diagonally dominant matrices in:

Q. Ye, Computing singular values of diagonally dominant matrices to
high relative accuracy, Math. Comp. 77 (2008), 2195-2230.
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TP and SR matrices

Definition. A matrix is strictly totally positive (STP) if all its minors
are positive and it is totally positive (TP) if all its minors are nonnegative.

Definition. A matrix is called sign-reqular (SR) if all £ x k& minors of
A have the same sign (which may depend on k) for all k. If, in addition, all
minors are nonzero, then it is called strictly sign-reqular (SSR).

Variation diminishing properties of sign-regular matrices A: if A is
a nonsingular (n + 1) x (n + 1) matrix, then A is sign-regular if and only if
the number of changes of strict sign in the ordered sequence of components
of Ax is less than or equal to the number of changes of strict sign in the
ordered sequence (zq, ..., x,), for all x = (zq,...,z,)’ € R*"™!

Proposition. Let A be a nonsingular TP matrix. Then all the
eigenvalues of A are positive.

Nice properties of eigenvalues and eigenvectors of these matrices
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Factorizations in terms of bidiagonal matrices

If K is TP and nonsingular, then we can write
K=L, 1Lp_o---L1DU;---U,_2Up_1,
where the matrices L; (resp., U;) are nonnegative lower (resp., upper)

triangular bidiagonal with unit diagonal and D is a diagonal matrix with
positive diagonals.

Uniqueness of the factorization under certain conditions in:

M. Gasca, J.M. P.: A matricial description of Neville elimination with
applications to total positivity. Linear Alg. Appl. 202 (1994), 33-54.
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Pinkus, Allan: Totally positive matrices. = Cambridge Tracts in
Mathematics, 181. Cambridge University Press, Cambridge, 2010.

If K is SR and nonsingular, then we can write
K=1L, 1Ly_9--L1DU;y---U,_2Up_1,

where the matrices L; (resp., U;) are nonnegative lower (resp., upper)
triangular bidiagonal with unit diagonal and D is a diagonal matrix with
nonzero diagonals:

M. Gasca, J.M. P.: A test for strict sign-regularity. Linear Alg. Appl.
197-198 (1994), 133—-142.
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If K is nonsingular TP and stochastic, then we can write

with

41,1

I — a1

27

K=F, 1F,_9---FiGy---Gp_2Gy_1,

Ky n—i 1 — Ky n—iq )



and

o \

1 0
G, = I —oqi41 Q1441 ,

\ 1 — AOp—in @n—i,n)

where, V (7,7), 0 < oy j < 1.

Interpretation in CAGD of this factorization as a corner cutting
algorithm: the most important algorithms in CAGD.
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The bidiagonal factorization of nonsingular TP matrices is associated
to an elimination procedure alternative to Gauss elimination called Neville
elimination. It requires O(n”) elementary operations to check if an n x n
matrix is either TP or STP:

M. Gasca, J.M. P.: Total positivity and Neville elimination. Linear
Algebra Appl. 165 (1992), 25-44.

Neville elimination produces zeros in each column by adding to each
row an adequate multiple of the previous one (instead of a multiple of the
pivot row as in Gauss elimination).
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Neville elimination leads to a factorization of a nonsingular totally
positive matrix in terms of bidiagonal factors, and the elements appearing
in the factorization are natural parameters of the matrix.

This factorization has been used to obtain accurate computations
with nonsingular totally positive matrices. In particular, accurate
computation of their SVDs and eigenvalues.

P. Koev: Accurate computations with totally nonnegative matrices,
SIAM J. Matrix Anal. Appl. 29 (2007), no. 3, 731-751.

P. Koev: Accurate Eigenvalues and SVDs of Totally Nonnegative
Matrices, STAM J. Matrix Anal. Appl. 27 (2005), 1-23.

J. Demmel and P. Koev: The Accurate and Efficient Solution of a
Totally Positive Generalized Vandermonde Linear System, SIAM J. Matrix
Anal. Appl. 27 (2005), 142-152.
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J.J. Martinez, J.M. P.: Fast algorithms of Bjrck-Pereyra type for solving
Cauchy-Vandermonde linear systems, Appl. Numer. Math. 26 (1998), 343-
352.

J.J. Martinez, J.M. P.: Factorizations of Cauchy-Vandermonde
matrices, Linear Algebra Appl. 284 (1998), 229-237.

A. Marco, J.J. Martinez: A fast and accurate algorithm for solving
Bernstein-Vandermonde linear systems, Linear Algebra Appl. 422 (2007),
616-628.

A. Marco, J.J. Martinez: Accurate computations with Said-Ball-
Vandermonde matrices, Linear Algebra Appl. 432 (2010), 2894-2908.

A. Marco, J.J. Martinez: Polynomial least squares fitting in the
Bernstein basis, Linear Algebra Appl. 433 (2010), 1254-1264.

J. Delgado, J.M. P.: Accurate computations with collocation matrices
of rational bases (2013). Applied Mathematics and Computation 219, pp.
4354-4364.
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A more general class of matrices with
bidiagonal decomposition and accurate computations

LK) — 0 1

\ .' z““j 1)



o \

I 0 "
(k) — L u,

1 ufzk—>1
\ |
Let A be a nonsingular n X n matrix. Suppose that we can write A as
a product of bidiagonal matrices

A=1LW...p=Dpyr=b . gl (1)

with

1. d; # 0 for all 7,

2. lgk):ugk):()fori<n—k,

3. lgk):O:>l,§_]i;8):Ofors:l,...,k—landugk):O:>u,§i;8)
s=1,....k— 1.

= 0 for
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Then we denote (1) by BD(A), a bidiagonal decomposition of A
satisfying the conditions of this definition.

Theorem. Let A be a nonsingular matrix. If a BD(.A) exists, then it
1s unique.

Let us denote by ¢ the vector ¢ = (e1,...,&,) with ¢; € {1} for
j =1,...,m, which will be called a signature.

Given a signature € = (1,...,6,_1) and a nonsingular n x n matrix A,
we say that A has a signed bidiagonal decomposition with signature
e if there exists a BD(A) such that

d; > 0 for all z,
lgk)sz-ZO, ugk)eiZOfor1§k§n—1andn—k§i§n—1.
Totally positive matrices and their inverses are particular examples.

BARRERAS A., P. J.M.: “Accurate computations of matrices with
bidiagonal decomposition using methods for totally positive matrices”
(2013). Numerical Linear Algebra with Applications 20, pp. 413-424..
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Definition. A system of functions (ug, ..., uy) is totally positive (TP)
if all its collocation matrices are totally positive.

TP systems of functions are interesting due to the variation diminishing
properties of totally positive matrices

Definition. A TP basis (ug,...,uy) i8 normalized totally positive
(NTP) if

> u(t)y=1, Vtel.
=0

Collocation matrices of NTP systems are TP and stochastic

35



In CAGD, NTP bases are associated with shape preserving
representations.

The normalized B-basis is the basis with optimal shape
preserving properties.

The Bernstein basis is the normalized B-basis of the space of
polynomials of degree less than or equal to n on a compact interval [a, b]:

bi(t) = (7;) (Z_Z) (S_Z)n i=0,....n

CARNICER J.M., P. J M.: “Shape preserving representations and
optimality of the Bernstein basis” (1993). Advances in Computational
Mathematics 1, pp. 173-196.

CARNICER J.M., P. J.M.: “Totally positive bases for shape preserving
curve design and optimality of B-splines” (1994). Computer Aided
Geometric Design 11, pp. 633-654.
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Minimal eigenvalue of TP matrices

DELGADO J., P. J.M.: “Progressive iterative approximation and bases
with the fastest convergence rates” (2007). Computer Aided Geometric
Design 24, pp. 10-18.

Theorem. The minimal eigenvalue of a Bernstein collocation matrix is
always greater than or equal to the minimal eigenvalue of the corresponding
collocation matrix of another NTP basis of the space.

P. J.M.: “Eigenvalue bounds for some classes of P-matrices”. Numerical

Linear Algebra with Applications 16 (2009), pp. 871-882.
Given i € {1,...,n} let

Ji=4j||j—ilisodd}, K;:={j#1i]|]|j—i|iseven}.

Theorem. Let A be a nonsingular totally positive matrix, and let
Amin (> 0) be its minimal eigenvalue. Then:

Amin > min{a;; — Z i} (1)

JjeJ;

37



Gerschgorin Theorem applied to any real matrix A = (a;;)i1<i j<n
implies that

mjn{aii — Z CLij} § mm{Re)\Z} (2)
z j#i z

The following nonsingular matrix A is totally positive:

12 7 1
A= 0 6 1
0 3 8

The eigenvalues of A are 12, 9 and 5. The bound given by (1) implies
that A\ = 5 and so it cannot be improved. However, the lower bound
for Amin given by (2) is now Apin > min{4,5,5} = 4.
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Optimal conditioning of Bernstein collocation matrices

DELGADO J., P. J.M.: “Optimal conditioning of Bernstein collocation
matrices” (2009). SIAM J. Matrix Anal. Appl. 31, 990-996.

Theorem. Let (bg,...,b,) be the Bernstein basis, let (vg,...,v,)
be another NTP basis of P, on [0,1],let 0 <ty < t; < --- < t, <1 and

V=M (”0’---’%) and B = M (bo’---’bn). Then

t0se st t0se st

Koo (B) < Koo(V).

39



Cond(A) = || [A7]|A][|sc-

Theorem. Let (bg,...,b,) be the Bernstein basis, let (vg,...,v,)
be another TP basis of P, on [0,1], let 0 < tg < t; < --- < t, < 1 and

V= M () and Bi= M (). Then

£ st t0se st

Cond(B') < Cond(V?).

ALONSO P., DELGADO J., GALLEGO R., P. J.M. (2013):
“Conditioning and accurate computations with Pascal matrices”. Journal
of Computational and Applied Mathematics 252, pp. 21-26.
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Progressive iterative approximation

H. LIN, H. BAO, G. WANG (2005), Totally positive bases and
progressive iteration approximation, Computer & Mathematics with
Applications 50, 575-586.

Y(t) = va; u; (1)

Now we parameterize the control points P; with the real increasing

sequence 1ty < t1 < --- < t,,, where the parameter t; is assigned to the
control point P; for : = 0,1,...,m. Then we have the starting curve
™m
VOt) =) P uilt)
i=0
of the sequence where PP = P; for i = 0,1,...,m. The remaining curves of

the sequence, v**1(¢) for k > 0, can be calculated as follows:
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’yk+1(t) _ Zpik+1 ui(t),
1=0

with AF = P, — 4*(t;) and P**' = PF + AF or i = 0,1,...,m. Then
k— n k— :
A? = AJ - D ico A Yui(ty), for j=0,1,...,m.
The iterative process can be written in matrix form in the following
way:
}T

[AS’AIf?,Afn }T

= (I - B) [Ag A AR
where [ is the identity matrix of n+ 1 order and B is the collocation matrix
of the basis (ug,...,Um) at tg < t1 < -+ < tpy,.

DELGADO J., P. J.M.: “Progressive iterative approximation and bases
with the fastest convergence rates” (2007). Computer Aided Geometric
Design 24, pp. 10-18.
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Theorem. The progressive iterative approximation process converges
for any nonsingular collocation matrix B of an NTP basis.

Key fact: p(I — B) < 1 (B has positive eigenvalues because it is totally
positive)

Which are the bases with fastest convergence rates?

Theorem. Given a space U with an NTP basis, the normalized B-
basis of U provides a progressive iterative approximation with the fastest
convergence rates among all NTP bases of U.

Theorem. Given spaces U,V with NTP bases, the tensor product
of the mnormalized B-bases of U,V provides a progressive iterative
approximation with the fastest convergence rates among all bases which
are tensor product of NTP bases of U, V.
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CARNICER J.M., DELGADO J., P. J.M.: “Richardson method
and totally nonnegative linear systems” (2010). Linear Algebra and its
Applications 433 , pp. 2010-2017.

CARNICER J.M., DELGADO J., P. J.M.:. “On the progressive
iteration approximation property and alternative iterations” (2011).
Computer Aided Geometric Design 28, pp. 523-526.

CARNICER J.M., DELGADO J., P. J.M.: “Progressive iteration
approximation property and the geometric algorithm” (2012). Computer-
Aided Design 44, pp. 143-145.

CARNICER J.M., DELGADO J., P. J.M.: “Richardson’s iterative
method for surface interpolation”. To appear in BIT.
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