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Representing signals

@ 1D signals — Fourier basis, wavelets, polynomials,. ..
@ What to do in higher dimensions?

@ What to do for general data - images, documents, gene arrays, ...7?
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What is general data?

Let X = {x;}I",, x; € RP, be a set of N points with two requirements:
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What is general data?

Let X = {x;}I",, x; € RP, be a set of N points with two requirements:

@ The set X is associated with a kernel function K : RP x RP — R,
and with the graph structure induced by K.

@ X has an associated tree structure — analog of a dydic partition.
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The goal

Find N functions
{¢n}yl)lzl7 ¢n : X = R?

such that (¢n, ®m) = 6n.m.

o We use

(f.g) = Z f(x)g(x), Vf,g:X—R.
XEX
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The goal

Find N functions

{¢n},'y:17 (25,1 X = ]R,

such that (¢n, ®m) = 6n.m.

o We use

(f,g) = Z f(x)g(x), Vf,g:X—R.
xXeX

o Further requirements

» The construction must be applicable in cases where D (the dimension
of each point in X) is very large.
> It should allow for a sparse representation of a large family of functions.

> It must have a fast and numerically stable algorithm.
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Known solutions

@ Two known solutions for general data
» Haar basis — Piecewise constant functions
» Fourier basis — Eigenvectors of the (graph) Laplacian

Haar basis Fourier basis

h, The eigenvectors of the graph Laplacian
1
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Haar basis — general data
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Haar-like on graphs (Gavish, Nadler, and Coffman)
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Haar basis — general data
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Haar-like on graphs (Gavish, Nadler, and Coffman)

Pros  » Simple, fast.
> Applicable to high dimensional data.

Cons  » Poor representations of smooth functions.
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Fourier basis

@ Eigenfunctions of the Laplacian, e.g., ¢” = —\op.
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Fourier basis

@ Eigenfunctions of the Laplacian, e.g., ¢” = —\op.
@ How to generalize? — Eigenvectors of the “graph Laplacian”.
@ The graph Laplacian, in a nutshell:
@ For any set of points (in RP, on a manifold,. .. ), use kernel K to

construct a graph
VV,'J = K (”X,‘ — XJ||2/26) .
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Fourier basis

@ Eigenfunctions of the Laplacian, e.g., ¢” = —\op.
@ How to generalize? — Eigenvectors of the “graph Laplacian”.
@ The graph Laplacian, in a nutshell:

@ For any set of points (in RP, on a manifold,. .. ), use kernel K to
construct a graph
VV,'J = K (”X,‘ — XJ||2/26) .
@ Normalize, e.g.,

N
L=1-B7'W, Bj;=> Wy

=1
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Fourier basis

@ Eigenfunctions of the Laplacian, e.g., ¢” = —\op.
@ How to generalize? — Eigenvectors of the “graph Laplacian”.
@ The graph Laplacian, in a nutshell:

@ For any set of points (in RP, on a manifold,. .. ), use kernel K to
construct a graph
VV,'J = K (”X,‘ — XJ||2/26) .

@ Normalize, e.g.,

N
L=1-B7'W, Bj;=> Wy

=1

© Compute the eigenvectors.
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Graph Laplacian basis

eode

Graph Laplacian’s eigenvectors on meshes (Gabriel Peyré)

Pros  » Efficient representation for smooth functions.
» Applicable to high dimensional (almost arbitrary) data.

Cons  » Poor representation of non-smooth functions/rapidly changing
functions.
Global basis functions.

v
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Let's construct a new family of bases
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Let’s construct a new family of bases

@ Orthogonal
@ Multi-scale — basis elements of varying support.

@ A family of bases parameterized by k — controls the localization of the
basis elements.

@ Extreme cases

» k=1 — Haar basis
» k=N — Fourier basis
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Let’s construct a new family of bases

Orthogonal

Multi-scale — basis elements of varying support.

A family of bases parameterized by k — controls the localization of the
basis elements.

@ Extreme cases

» k=1 — Haar basis
» k=N — Fourier basis

(]

Stable O(k?Nlog N + T(N, k) log(N)) algorithm, where T (N, k) is
the complexity of computing k top eigenvectors. Usually N > k.
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Let’s construct a new family of bases

Orthogonal

Multi-scale — basis elements of varying support.

A family of bases parameterized by k — controls the localization of the
basis elements.

@ Extreme cases

» k=1 — Haar basis
» k=N — Fourier basis

(]

Stable O(k?Nlog N + T(N, k) log(N)) algorithm, where T (N, k) is
the complexity of computing k top eigenvectors. Usually N > k.

Building blocks: graph Laplacian and multi-resolution analysis.
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Construction overview

Two phases:
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Construction overview

Two phases:

@ Define the vectors which span the approximation spaces
VoC Vi C---C VJ

where V; = RN, with N the number of data points.

@ Apply a fast orthogonalization process to obtain
Vi=VoeWoa Wi & --- & Wy,

with W, LV, W, ® V, = V11 for p > 0.
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Phaseone- V, C Vi C--- C V,,
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Phaseone- V, C Vi C--- C V,,

@ Define the first approximation space V; as

Vo = span {first k eigenvectors of the (global) graph Laplacian}
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Phaseone- V, C Vi C--- C V,,

@ Define the first approximation space V; as

Vo = span {first k eigenvectors of the (global) graph Laplacian}

@ To construct Vj, j > 1 we use

@ Restriction operator on Vj_;.

@ Local graph Laplacian and its first eigenvectors.
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Phaseone- V, C Vi C--- C V,,

@ Define the first approximation space V; as

Vo = span {first k eigenvectors of the (global) graph Laplacian}

@ To construct Vj, j > 1 we use

@ Restriction operator on Vj_;.

@ Local graph Laplacian and its first eigenvectors.

@ This construction is repeated until V; satisfies dim(V;) = N.
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Approximation spaces — an example

Constructing V4 = Vig+ Vi1

—acs}

NE

I

Restriction
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Approximation spaces — an example

Constructing V4 = Vig+ Vi1

1\
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Restriction
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A few additional remarks
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A few additional remarks

© Restriction operator and the tree ensure that the total number of
nonzeros in each level is kN (sparsity).
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A few additional remarks

© Restriction operator and the tree ensure that the total number of
nonzeros in each level is kN (sparsity).

@ Balanced tree means O(log N) levels (or tree depth). Therefore, we
can “pack” the nested spaces in a sparse matrix of O(kN log(N))
nonzeros.
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A few additional remarks

© Restriction operator and the tree ensure that the total number of
nonzeros in each level is kN (sparsity).

@ Balanced tree means O(log N) levels (or tree depth). Therefore, we
can “pack” the nested spaces in a sparse matrix of O(kN log(N))
nonzeros.

© We do not assume the tree is binary nor a complete tree.
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Phase two
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Phase two

@ Recall that

VJ'CVJ, VJJ_WJ:>VJ'J_WJ, 0<j< J.

VocV,icl,c s Vi =V,® W,
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Phase two

@ Recall that

VJ'CVJ, VJJ_WJ:>VJ'J_WJ, 0<j< J.
VocV,icl,c s Vi =V,® W,

—

@ Due to sparsity, every complement space W; is calculated with
O(k?N) operations.
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Phase two

@ Recall that

VJ'CVJ, VJJ_WJ:>VJ'J_WJ, 0<j< J.
Vo V,cV,C¥; Vi1 = V0 W,

S

@ Due to sparsity, every complement space W; is calculated with
O(k?N) operations.

© Overall complexity for this phase is O(kzNIog N). Usually N > k.
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Representing functions (synthetic data)

The 1D case: taking 128 equally spaced on [0, 1]. Compare the Haar
(k =1), Laplacian (k = N), and an intermediate case (1 < k < N)
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Representing functions (synthetic data)

The function:
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Representing functions (synthetic data)

sin(4x)

Nir Sharon (Tel-Aviv University)

Error (L2 norm)
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Representing 1D functions — oscillatory function

The function:

osf 4
osf 4

: 1
sin <o.01+2x>
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Representing 1D functions — oscillatory function

—k=8 1
Haar (k=1) i
=== Laplacian (k=N)

1 0 20 40 60 80 s 120
- O oz o5 o4 95 95 o7 o5 08 Number of used coefficients
sin (0.01+2x) L, approximation error
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Representing 1D functions — oscillatory function (cont.)

J——
v k=16 H
"""" k=32
3
F — 80 700 120
i d Number of used coefficients
i 1 . .
sin (0.01+2X> L, approximation error
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Representing 1D functions — piecewise smooth function
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Representing 1D functions — piecewise smooth function

T
—k=8

Haar (k=1)
==~ Laplacian (k=N)

Error (L2 norm)

40 60 80 100 120
Number of used coefficients

R

sign(x — 5) sin(4x) L, approximation error
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A smooth function on §2 C R3

A 3D case - 1000 data points distributed on the sphere. Compare between
k =1,10,50,1000.
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A smooth function on §2 C R3

Relative L2 Error

100 200 300 400 500 600
" Number of used coefficients.

(a) C(x) = || cos(2x)|| (b) Lo relative error

Figure: Representing a smooth function on the sphere.
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A rapidly changing function on S§? C R3

Haar (k=1)

---Laplacian (k=N)

Relative L2 Error

700 800 900 1000

L ‘ , PRALLEY i
100 200 300 400 500 600
Number of used coefficients

(a) R(x) =sin ((x"x +0.2)71) (b) L2 relative error

Figure: R oscillates rapidly in regions on the sphere where x close to be
orthogonal to xp.
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Compression of hyper spectral images
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Compression of hyper spectral images

@ Remote-sensing platforms are often comprised of a cluster of different
spectral range detectors or sensors to benefit from the spectral
identification capabilities of each range.
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Compression of hyper spectral images

@ Remote-sensing platforms are often comprised of a cluster of different
spectral range detectors or sensors to benefit from the spectral
identification capabilities of each range.

@ In this example, hyperspectral image of visible spectral region:

Figure: The 12 different wave length images given as the data.
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Compression of surface temperature
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Compression of surface temperature

@ The surface temperature is derived form sensors in non-visible
spectral region - long-wave infrared sensors. Measured in Kelvin.

L L L
20 w E) B 100 120 40 160 180 20
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Compression of surface temperature

@ The surface temperature is derived form sensors in non-visible
spectral region - long-wave infrared sensors. Measured in Kelvin.

L L L
20 w E) B 100 120 40 160 180 20

@ We compare the compression with two (non-adaptive) benchmarks:
DCT and JPEG2000.
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Compression results
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Compression results

Using 200 coefficients, that is 0.5%:

330 330
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(a) LMW
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Thank you |
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Questions ?
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