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The challenge: provide a spectral characterization of
convergence of uniform subdivision in the max-norm.

Spectral means: using the spectral structure of a finite number
of linear endomorphisms, each of which with a finite rank.
Spectral structure means: eigenvalues and eigenvectors.
Generalizations: p <∞, vector subdivision, fast convergence,
infinite mask, non-dyadic dilations...
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mask and dilation

a ∈ CZZd/2 is a finite mask. Considered as a discrete finite
measure
D is dyadic dilation:

(Df )(t) = f (2t).
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a ∈ CZZd/2 is a finite mask. Considered as a discrete finite
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D is dyadic dilation:

(Df )(t) = f (2t).

Definition: the cascade operator C

C : f 7→ Df∗a.

A refinable function φ is a fixed-point of C:

Cφ = φ.
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mask and dilation

a ∈ CZZd/2 is a finite mask. Considered as a discrete finite
measure
D is dyadic dilation:

(Df )(t) = f (2t).

Definition: the cascade operator C

C : f 7→ Df∗a.

A refinable function φ is a fixed-point of C:

Cφ = φ.

Question
Given a compactly supported g, do we have

‖Ckg − φ‖∞ → 0?
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Necessary conditions
Convergence of cascade: necessary conditions

Each of the following conditions is necessary:
g, φ ∈ Cα, α ≥ 0.∑

j∈γ+2ZZd a(j) = 1, γ ∈ {0,1}d .
g − φ has zero mean.
The PSI space S(g) provides approximation order 1 in the
∞-norm, viz., for each sufficiently smooth f , as k →∞,

distL∞(f ,DkS(g)) = O(2−k ).

G0

is the collection of compact support g that satisfy the above.

Cascade and subdivision defined The cascade operator Some necessary condition for convergence Subdivision L2 Dependence relations



Subdivision: definition and convergence

Definition: the space Qk

Qk := CZZd/2k

Definition: The subdivision operator Sk , convergence

Sk : Q0 → Qk , λ 7→ Dk−1a ∗ Sk−1λ.

Convergence:

‖Dkg ∗ Skδ − φ‖∞ → 0, ∀g ∈ G0.
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Subdivision: definition and convergence

Definition: the space Qk

Qk := CZZd/2k

Definition: The subdivision operator Sk , convergence

Sk : Q0 → Qk , λ 7→ Dk−1a ∗ Sk−1λ.

Convergence:

‖Dkg ∗ Skδ − φ‖∞ → 0, ∀g ∈ G0.

Ckg = Dkg ∗ Skδ

k∑
j=1

Dj−1 +Dk = 1 +D
k∑

j=1

Dj−1.
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The L2-case is spectral

The Transfer operator T

With f a trig. pol., and τ := |â|2,

T : f 7→ D−1(
∑

γ∈{0,1}d

(τ f )(·+ πγ)).
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The L2-case is spectral

The Transfer operator T

With f a trig. pol., and τ := |â|2,

T : f 7→ D−1(
∑

γ∈{0,1}d

(τ f )(·+ πγ)).

The transfer operator encodes L2-properties of a and φ,
including a complete characterization of the convergence of
cascade: essentially it need to have a unique dominant
eigenvalue (acting on any large enough set of trig. pol.).
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The L2-case is spectral

The Transfer operator T

With f a trig. pol., and τ := |â|2,

T : f 7→ D−1(
∑

γ∈{0,1}d

(τ f )(·+ πγ)).

The transfer operator encodes L2-properties of a and φ,
including a complete characterization of the convergence of
cascade: essentially it need to have a unique dominant
eigenvalue (acting on any large enough set of trig. pol.).

The transfer operator also encodes the L2-smoothness of φ.

The transfer cannot be used (obvious reasons) for other norms.
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Characterization: joint spectral radius

There are characterizations in terms of notion of joint spectral
radius.
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Characterization: joint spectral radius

There are characterizations in terms of notion of joint spectral
radius.

Despite of its name, the joint spectral radius is joint but not
spectral.
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Convergence depends on dependence relations

The space Kφ

Kφ := {λ ∈ Q0 : φ ∗ λ = 0.}

Convergence of cascade: (more or less) we need that

Sk (Kφ)→ 0.
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Convergence depends on dependence relations

The space Kφ

Kφ := {λ ∈ Q0 : φ ∗ λ = 0.}

Convergence of cascade: (more or less) we need that

Sk (Kφ)→ 0.

Special case:

If Sk (Kφ) = 0 for some k , then convergence.

Special case:
If dim Kφ <∞, then spectral.

Special case: box splines, de Boor-R
If φ is a box spline, then spectral.
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