A class of anisotropic multiple multiresolution analysis

Mariantonia Cotronei
University of Reggio Calabria, Italy

MAIA 2013, Erice, September 2013

Jointly with:
Mira Bozzini, Milvia Rossini, Tomas Sauer
Description of expanding matrices and related objects
Description of expanding matrices and related objects
Inside filterbanks and subdivisions
Description of expanding matrices and related objects
Inside filterbanks and subdivisions
Remarks of their multiple counterparts
Description of expanding matrices and related objects
Inside filterbanks and subdivisions
Remarks of their multiple counterparts
An efficient strategy to construct (multiple) filterbanks
Description of expanding matrices and related objects
Inside filterbanks and subdivisions
Remarks of their multiple counterparts
An efficient strategy to construct (multiple) filterbanks
Case study
Description of expanding matrices and related objects
Inside filterbanks and subdivisions
Remarks of their multiple counterparts
An efficient strategy to construct (multiple) filterbanks
Case study
Expanding matrices

Let \(M \in \mathbb{Z}^{s \times s} \) be an \textit{expanding matrix}, i.e.

- all its eigenvalues are larger than one in modulus
- \(\|M^{-n}\| \to 0 \)

\[
\downarrow
\]

as \(n \) increases, \(M^{-n}\mathbb{Z}^s \to \mathbb{R}^s \)
Expanding matrices

Let $M \in \mathbb{Z}^{s \times s}$ be an expanding matrix, i.e.

- all its eigenvalues are larger than one in modulus
- $\|M^{-n}\| \to 0$

as n increases, $M^{-n}\mathbb{Z}^s \to \mathbb{R}^s$

- M defines a sampling lattice
- $d = |\det(M)|$ is the number of cosets
The cosets have the form

\[M\mathbb{Z}^s + \xi_j, \quad j = 0, \ldots, d - 1 \]

where

\[\xi_j \in M[0, 1)^s \cap \mathbb{Z}^s \]

are the coset representatives.

It is well known that

\[\mathbb{Z}^s = \bigcup_{j=0}^{d-1} (\xi_j + M\mathbb{Z}^s) \]
Separable/Nonseparable

\(\mathbf{M} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \)

\(\mathbf{M} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \)
Isotropy/Anisotropy

\[M = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \]

\[M = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \]
Down/upsampling

Let $c \in \ell(\mathbb{Z}^s)$ be a given signal.
Down/upsampling

Let $c \in \ell(\mathbb{Z}^s)$ be a given signal.

- **Downsampling** operator \downarrow_M associated to M:

 $$\downarrow_M c = c(M \cdot)$$
Let $c \in \ell(\mathbb{Z}^s)$ be a given signal.

- **Downsampling** operator \downarrow_M associated to M:
 \[\downarrow_M c = c(M \cdot) \]

- **Upsampling** operator \uparrow_M associated to M:
 \[\uparrow_M c(\alpha) = \begin{cases}
 c(M^{-1}\alpha) & \text{if } \alpha \in M\mathbb{Z}^s \\
 0 & \text{otherwise}
\end{cases} \]
Filtering

Filter operator F:

$$Fc = f \ast c = \sum_{\alpha \in \mathbb{Z}^s} f(\cdot - \alpha)c(\alpha)$$

where $f = F\delta = (f(\alpha) : \alpha \in \mathbb{Z}^s)$ is the impulse response of F
\textit{d-channel filter bank}

Critically sampled: \(d = |\det M| \)
d-channel filter bank

Critically sampled: $d = |\det M|$

- **Analysis filter:**

$$F : \ell(\mathbb{Z}^s) \rightarrow \ell^d(\mathbb{Z}^s)$$

$$Fc = [\downarrow_M F_jc : j = 0, \ldots, d - 1]$$

- **Synthesis filter:**

$$G : \ell^d(\mathbb{Z}^s) \rightarrow \ell(\mathbb{Z}^s)$$

$$G [c_j : j = 0, \ldots, d - 1] = \sum_{j=0}^{d} G_j \uparrow_M c_j,$$
d-channel filter bank

Critically sampled: $d = |\det M|$

- **Analysis filter:**

 $$F : \ell(\mathbb{Z}^s) \to \ell^d(\mathbb{Z}^s)$$

 $$Fc = [\downarrow M F_j c : j = 0, \ldots, d - 1]$$

- **Synthesis filter:**

 $$G : \ell^d(\mathbb{Z}^s) \to \ell(\mathbb{Z}^s)$$

 $$G [c_j : j = 0, \ldots, d - 1] = \sum_{j=0}^{d} G_j \uparrow M c_j,$$

Perfect reconstruction:

$$GF = I$$
d-channel filter bank

By perfect reconstruction:

$$c \xrightarrow{F} \begin{bmatrix} c_0^1 \\ c_1^1 \\ \vdots \\ c_{d-1}^1 \end{bmatrix} = \begin{bmatrix} c_1^1 \\ \vdots \\ 0 \end{bmatrix} \xrightarrow{G} c$$

$F_0, G_0 \rightarrow$ low-pass

$F_j, G_j, \quad j > 0 \rightarrow$ high-pass

Multiresolution decomposition …
Iterated filter bank

MRA structure...

Multiple multiresolution analysis
Observe that

\[G_j \uparrow c = g_j \ast \uparrow_M c = \sum_{\alpha \in \mathbb{Z}^s} g_j(\cdot - M\alpha) c(\alpha), \]

i.e. all reconstruction filters act as stationary subdivision operators with dilation matrix \(M \).
Stationary subdivision

Subdivision operator:

\[S := S_{a, M} : \ell(\mathbb{Z}^s) \rightarrow \ell(\mathbb{Z}^s) \]

defined by

\[c^{(n+1)} := Sc^{(n)} = \sum_{\alpha \in \mathbb{Z}^s} a(\cdot - M\alpha)c^{(n)}(\alpha) \]

where \(M \in \mathbb{Z}^{s \times s} \) is expanding
Multiple subdivision

Consider a set of a finite number of dilation matrices

\((M_j : j \in \mathbb{Z}_m)\)

where \(\mathbb{Z}_m = \{0, \ldots, m - 1\}\) for \(m \in \mathbb{N}\).
Multiple subdivision

- Consider a set of a finite number of dilation matrices

\[(M_j : j \in \mathbb{Z}_m)\]

where \(\mathbb{Z}_m = \{0, \ldots, m - 1\}\) for \(m \in \mathbb{N}\).

- Associate a mask to each \(M_j\):

\[a_j \in \ell (\mathbb{Z}^s), \quad j \in \mathbb{Z}_m\]
Multiple subdivision

- Consider a set of a finite number of dilation matrices
 \((M_j : j \in \mathbb{Z}_m) \)
 where \(\mathbb{Z}_m = \{0, \ldots, m - 1\} \) for \(m \in \mathbb{N} \).

- Associate a mask to each \(M_j \):
 \(a_j \in \ell(\mathbb{Z}^s), \quad j \in \mathbb{Z}_m \)

Together, \(a_j \) and \(M_j \) define \(m \) stationary subdivision operators

\(S_j := S_{a_j, M_j} \)
Multiple subdivision

Call

\[\epsilon = (\epsilon_1, \ldots, \epsilon_n) \in \mathbb{Z}_m^n \]

a digit sequence of length \(n =: |\epsilon| \).
Multiple subdivision

Call

$$\epsilon = (\epsilon_1, \ldots, \epsilon_n) \in \mathbb{Z}_m^n$$

a digit sequence of length $n =: |\epsilon|$.

We collect all finite digit sequences in

$$\mathbb{Z}_m^* := \bigcup_{n \in \mathbb{N}} \mathbb{Z}_m^n$$

and extend $|\epsilon|$ canonically to $\epsilon \in \mathbb{Z}_m^*$.
Multiple subdivision

Consider the subdivision operator:

$$S_\epsilon = S_{\epsilon_n} \cdots S_{\epsilon_1}.$$
Multiple subdivision

Consider the subdivision operator:

\[S_\epsilon = S_{\epsilon_n} \cdots S_{\epsilon_1}. \]

For any \(\epsilon \in \mathbb{Z}_m^* \) there exists a mask

\[a_\epsilon = S_\epsilon \delta \]

such that

\[S_\epsilon c = \sum_{\alpha \in \mathbb{Z}^s} a_\epsilon (\cdot - M_\epsilon \alpha) c(\alpha), \quad c \in \ell(\mathbb{Z}^s), \]

where

\[M_\epsilon := M_{\epsilon_n} \cdots M_{\epsilon_1}, \quad n = |\epsilon|. \]
Multiple subdivision

Values of $S_\epsilon c = \text{approximations to a function on } M_\epsilon^{-1} \mathbb{Z}^s$.
Multiple subdivision

Values of $S_\epsilon c$ = approximations to a function on $M_\epsilon^{-1} \mathbb{Z}^s$.

In order for $M_\epsilon^{-1} \mathbb{Z}^s$ to tend to \mathbb{R}^s:

Each matrix M_j must be expanding,

All the matrices M_ϵ must be expanding

⇒ The matrices M_ϵ must all be jointly expanding i.e.

$$\lim_{|\epsilon| \to \infty} \|M_\epsilon^{-1}\| = 0,$$

or, equivalently,

$$\rho(M_\epsilon^{-1} : j \in \mathbb{Z}) < 1$$

(joint spectral radius condition)
Multiple subdivision

Values of $S_{\epsilon}c = \text{approximations to a function on } M_{\epsilon}^{-1}\mathbb{Z}^s$.

In order for $M_{\epsilon}^{-1}\mathbb{Z}^s$ to tend to \mathbb{R}^s:

- each matrix M_j must be expanding,
Multiple subdivision

Values of $S_\epsilon \subset \approx$ approximations to a function on $M_\epsilon^{-1} \mathbb{Z}^s$.

In order for $M_\epsilon^{-1} \mathbb{Z}^s$ to tend to \mathbb{R}^s:

- each matrix M_j must be expanding,
- all the matrices M_ϵ must be expanding.
Multiple subdivision

Values of $S_\epsilon c = \text{approximations to a function on } M_\epsilon^{-1}\mathbb{Z}^s$.

In order for $M_\epsilon^{-1}\mathbb{Z}^s$ to tend to \mathbb{R}^s:
- each matrix M_j must be expanding,
- all the matrices M_ϵ must be expanding

\[\downarrow\]

The matrices M_ϵ must all be jointly expanding i.e.

\[
\lim_{|\epsilon| \to \infty} \| M_\epsilon^{-1} \| = 0, \tag{1}
\]

or, equivalently,

\[
\rho \left(M_j^{-1} : j \in \mathbb{Z}_m \right) < 1
\]

(joint spectral radius condition)
Multiple subdivision

Example: adaptive subdivision/discrete shearlets

Based on:
Multiple subdivision

Example: adaptive subdivision/discrete shearlets

Based on:

- parabolic scaling \[
\begin{bmatrix}
2 \\
4
\end{bmatrix}
\]
Multiple subdivision

Example: adaptive subdivision/discrete shearlets

Based on:

- parabolic scaling $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$
- shear $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
Multiple subdivision

Example: adaptive subdivision/discrete shearlets

Based on:

- parabolic scaling \[
\begin{bmatrix}
2 \\
4
\end{bmatrix}
\]

- shear \[
\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\]

What about other choices? Case study ...
Multiple d-channel filter bank

For each $k \in \mathbb{Z}_m$

- **Analysis filters:** $F_k : \ell(\mathbb{Z}^s) \rightarrow \ell^d(\mathbb{Z}^s)$ acting as

 $$F_k c = \left[\Downarrow M_k F_{k,j} c : j = 0, \ldots, d - 1 \right]$$
Multiple \(d\)-channel filter bank

For each \(k \in \mathbb{Z}_m\)

- **Analysis filters**: \(F_k : \ell(\mathbb{Z}^s) \to \ell^d(\mathbb{Z}^s)\) acting as

\[
F_k c = [\downarrow_{M_k} F_{k,j} c : j = 0, \ldots, d - 1]
\]

- **Synthesis filters**: \(G_k : \ell^d(\mathbb{Z}^s) \to \ell(\mathbb{Z}^s)\), acting as

\[
G_k [c_j : j = 0, \ldots, d - 1] = \sum_{j=0}^{d} G_{k,j} \uparrow_{M_k} c_j,
\]
Multiple d-channel filter bank

For each $k \in \mathbb{Z}_m$

- **Analysis filters:** $F_k : \ell(\mathbb{Z}^s) \rightarrow \ell^d(\mathbb{Z}^s)$ acting as

 $$F_k c = [\downarrow M_k F_{k,j}c : j = 0, \ldots, d-1]$$

- **Synthesis filters:** $G_k : \ell^d(\mathbb{Z}^s) \rightarrow \ell(\mathbb{Z}^s)$, acting as

 $$G_k [c_j : j = 0, \ldots, d-1] = \sum_{j=0}^{d} G_{k,j} \uparrow M_k c_j,$$

Perfect reconstruction:

$$G_k F_k = I, \quad k \in \mathbb{Z}_m$$
Multiple multiresolution analysis
Symbol notation

Given a finitely supported a

- **Symbol:**

 $$a^\#(z) := \sum_{\alpha \in \mathbb{Z}^s} a(\alpha) z^\alpha$$
Symbol notation

Given a finitely supported a

- **Symbol:**
 \[a^\#(z) := \sum_{\alpha \in \mathbb{Z}^s} a(\alpha) z^\alpha \]

- **Subsymbols:**
 \[a_{\xi_j}^\#(z) := \sum_{\alpha \in \mathbb{Z}^s} a(M\alpha + \xi_j) z^\alpha, \quad j = 0, \ldots, d - 1 \]
Filter bank construction

Start from the lowpass reconstruction filter G_0 associated to a mask a.
Filter bank construction

Start from the **lowpass** reconstruction filter G_0 associated to a mask a.

G_0 can be completed to a perfect reconstruction filter bank if and only if a is unimodular:

- algebraic property
- involved in general
- simple for **interpolatory** schemes
Filter bank construction

Start from the lowpass reconstruction filter G_0 associated to a mask a.

G_0 can be completed to a perfect reconstruction filter bank if and only if a is unimodular:

- algebraic property
- involved in general
- simple for interpolatory schemes

In 1D $\rightarrow a^\#(z)$ and $a^\#(-z)$ have no common zeros.
Filter bank construction

Simplest filter bank \longrightarrow lazy filters: translation operators

$$\tau_{\xi_i}, \quad i = 0, \ldots, d - 1$$

In fact

$$I = \sum_{i=0}^{d-1} \tau_{\xi_i} \uparrow \downarrow \tau_{-\xi_i},$$

Multiple multiresolution analysis
Filter bank construction

Simplest filter bank \(\rightarrow\) lazy filters: translation operators

\[\tau_{\xi_i}, \quad i = 0, \ldots, d - 1 \]

In fact

\[I = \sum_{i=0}^{d-1} \tau_{\xi_i} \uparrow \downarrow \tau_{-\xi_i}, \]

It:

- decomposes a signal modulo \(M\) in the analysis
- recombines the components in the synthesis
Filter bank construction

If a defines an interpolatory subdivision scheme, then G_0 can be easily completed to a perfect reconstruction filter bank.
If a defines an interpolatory subdivision scheme, then G_0 can be easily completed to a perfect reconstruction filter bank.

A subdivision operator S_a with dilation matrix M is called **interpolatory** if

$$S_a c(M \cdot) = c, \quad \text{for any } c \in \ell(\mathbb{Z}^s)$$
The completion of an interpolatory \(a \) yields the prediction–correction scheme.
Prediction–correction scheme

The completion of an interpolatory analysis yields the prediction–correction scheme

- **Analysis part:**

 \[F_0 = I, \quad F_j = \tau_{-\xi_j} (I - S_a \downarrow M), \quad j = 1, \ldots, d - 1, \]

- **Synthesis part:**

 \[G_0 \quad \text{and} \quad G_j = \tau_{\xi_j}, \quad j = 1, \ldots, d - 1. \]
Prediction–correction scheme

In terms of symbols:

\[F_0^\#(z) = 1, \quad F_j^\#(z) = z^{\xi_j} - a_{\xi_j}^\#(z^{-M}), \quad j = 1, \ldots, d - 1 \]

\[G_0^\#(z) = a^\#(z), \quad F_j^\#(z) = z^{\xi_j}, \quad j = 1, \ldots, d - 1 \]
A special construction of s-variate interpolatory schemes

Let

$$M = \Theta \Sigma \Theta'$$

be a Smith factorization of the expanding matrix M, where

$$\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots \\ & & & \sigma_s \end{bmatrix}$$

and Θ, Θ' unimodular.
A special construction of s-variate interpolatory schemes

1. Find s univariate interpolatory subdivision schemes $b_j, \quad j = 1, \ldots, s$

with scaling factors or “arity” σ_j;
A special construction of s-variate interpolatory schemes

1. Find s univariate interpolatory subdivision schemes

$$b_j, \quad j = 1, \ldots, s$$

with scaling factors or “arity” σ_j;

2. Consider the tensor product

$$b_\Sigma := \bigotimes_{j=1}^{s} b_j, \quad b_\Sigma(\alpha) = \prod_{j=1}^{s} b_j(\alpha_j), \quad \alpha \in \mathbb{Z}^s,$$

which is an interpolatory subdivision scheme for the diagonal scaling matrix Σ, i.e.

$$b_\Sigma(\Sigma \cdot) = \delta$$

Multiple multiresolution analysis
A special construction of s-variate interpolatory schemes

Set

$$b_M := b_\Sigma(\Theta^{-1}).$$
A special construction of s-variate interpolatory schemes

Set

$$b_M := b_\Sigma(\Theta^{-1})$$

Then:

b_M defines an interpolatory scheme for the dilation matrix M.

Multiple multiresolution analysis
A special construction of s-variate interpolatory schemes

Set

$$b_M := b_{\Sigma}(\Theta^{-1} \cdot)$$

Then:

b_M defines an interpolatory scheme for the dilation matrix M.

In terms of symbols:

$$b^\#: M(z) = b^\#: (z^\Theta)$$
A special choice of scaling matrices

We are considering the matrices

\[M_0 := \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \]

\[M_1 := S_1 M_0 = \begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix}, \]

where we make use of the shear matrices

\[S_j := \begin{bmatrix} 1 & j \\ 0 & 1 \end{bmatrix}, \quad j \in \mathbb{Z}. \]
A special choice of scaling matrices

It is easily verified that

\[\det M_0 = \det M_1 = -3 \]
A special choice of scaling matrices

It is easily verified that

- \(\det M_0 = \det M_1 = -3 \)
- \(M_0 \) is anisotropic (eigenvalues: \(\frac{1}{2} (1 \pm \sqrt{13}) \))

\(M_0 \) and \(M_1 \) are jointly expanding so they define a reasonable subdivision scheme.
A special choice of scaling matrices

It is easily verified that

- $\det M_0 = \det M_1 = -3$
- M_0 is anisotropic (eigenvalues: $\frac{1}{2} (1 \pm \sqrt{13})$)
- M_1 is isotropic (eigenvalues: $\pm \sqrt{3}$)
A special choice of scaling matrices

It is easily verified that

- \(\det M_0 = \det M_1 = -3 \)
- \(M_0 \) is anisotropic (eigenvalues: \(\frac{1}{2} \left(1 \pm \sqrt{13} \right) \))
- \(M_1 \) is isotropic (eigenvalues: \(\pm \sqrt{3} \))
- \(M_0 \) and \(M_1 \) are jointly expanding so they define a reasonable subdivision scheme.
Coset representation: M_0
Coset representation: M_1
The subdivision process

Sequence 0 0 0 0 0 0

Multiple multiresolution analysis
The subdivision process

Sequence 1 1 1 1 1 1

Initial data

Multiple multiresolution analysis
The subdivision process

Sequence 0 1 0 1 0 1

Initial data

Multiple multiresolution analysis
The subdivision process

Sequence 1 0 1 0 1 0

Initial data

M0

M0 M1 M0

M0 M1 M0 M1 M0

M1 M0 M1 M0 M1 M0

Multiple multiresolution analysis
In "Multiple MRA" one considers functions of the form

\[\phi_\eta(M_\epsilon \cdot -\alpha), \quad \alpha \in \mathbb{Z}^s. \]
In "Multiple MRA" one considers functions of the form

$$\phi_\eta(M_\epsilon \cdot -\alpha), \quad \alpha \in \mathbb{Z}^s.$$

- ϕ_η : limit function of subdivision
In "Multiple MRA" one considers functions of the form

$$\phi_\eta(M_\epsilon \cdot -\alpha), \quad \alpha \in \mathbb{Z}^s.$$

- ϕ_η: limit function of subdivision
- Role of M_ϵ: scale & rotate
In "Multiple MRA" one considers functions of the form

\[\phi_\eta(M_\epsilon \cdot -\alpha), \quad \alpha \in \mathbb{Z}^s. \]

- \(\phi_\eta \): limit function of subdivision
- Role of \(M_\epsilon \): scale & rotate

Can we get "all rotations" by appropriate \(\epsilon \)?
In "Multiple MRA" one considers functions of the form

$$\phi_\eta(M_\epsilon \cdot -\alpha), \quad \alpha \in \mathbb{Z}^s.$$

- ϕ_η: limit function of subdivision
- Role of M_ϵ: scale & rotate

Can we get "all rotations" by appropriate ϵ?

→ Slope resolution
Slope resolution

Action of:

\[M_1 M_1 \text{ (blue)}, \ M_0 M_1 \text{ (red)}, \ M_1 M_0 \text{ (green)}, \ M_0 M_0 \text{ (cyan)} \]
on the unit vectors
Slope resolution

Action of:

\[
M_1 M_1 M_1 M_1 M_1 M_1 \text{ (blue)}, \ M_0 M_1 M_0 M_1 M_0 M_1 \text{ (red)}, \ M_1 M_0 M_1 M_0 M_1 M_0 \text{ (green)}, \ M_0 M_0 M_0 M_0 M_0 M_0 \text{ (cyan)}
\]

on the unit vectors
Slope resolution

Can all directions, i.e., all lines through the origin, be generated by applying an appropriate M_ϵ to a given reference line?
Slope resolution

Given the reference line

\[L_x := \mathbb{R} x, \quad x \in \mathbb{R}^2 \]

and a target line

\[L_y := \mathbb{R} y, \quad y \in \mathbb{R}^2 \]

we ask whether there exists \(\epsilon \in \mathbb{Z}^*_m \) such that

\[L_y \sim M_\epsilon L_x. \]
Slope resolution

We represent lines by means of slopes, setting

\[L(s) := \mathbb{R} \begin{bmatrix} 1 \\ s \end{bmatrix}, \quad s \in \mathbb{R} \cup \{\pm \infty\}, \]

where \(s = \pm \infty \) corresponds to (the same) vertical line.
Slope resolution

We represent lines by means of slopes, setting

\[L(s) := \mathbb{R} \begin{bmatrix} 1 \\ s \end{bmatrix}, \quad s \in \mathbb{R} \cup \{\pm \infty\}, \]

where \(s = \pm \infty \) corresponds to (the same) vertical line.

Theorem

For each \(s \in (0, \frac{1}{2}) \), any \(s' \in \mathbb{R} \) and any \(\delta > 0 \) there exists \(\epsilon \in \mathbb{Z}_m^ \) such that*

\[|s' - s_{\epsilon}| < \delta, \quad L(s_{\epsilon}) = M_{\epsilon} L_s. \]
Slope resolution

We represent lines by means of slopes, setting

\[L(s) := \mathbb{R} \begin{bmatrix} 1 \\ s \end{bmatrix}, \quad s \in \mathbb{R} \cup \{ \pm \infty \}, \]

where \(s = \pm \infty \) corresponds to (the same) vertical line.

Theorem

For each \(s \in (0, \frac{1}{2}) \), any \(s' \in \mathbb{R} \) and any \(\delta > 0 \) there exists \(\epsilon \in \mathbb{Z}_m^* \) such that

\[|s' - s_\epsilon| < \delta, \quad L(s_\epsilon) = M_\epsilon L_s. \]
Slope resolution

We represent lines by means of slopes, setting

\[L(s) := \mathbb{R} \begin{bmatrix} 1 \\ s \end{bmatrix}, \quad s \in \mathbb{R} \cup \{\pm \infty\}, \]

where \(s = \pm \infty \) corresponds to (the same) vertical line.

Theorem

For each \(s \in (0, \frac{1}{2}) \), any \(s' \in \mathbb{R} \) and any \(\delta > 0 \) there exists \(\epsilon \in \mathbb{Z}_m^ \) such that

\[|s' - s_\epsilon| < \delta, \quad L(s_\epsilon) = M_\epsilon L_s. \]

Indeed even combinations of \(M_{01} = M_0 M_1 \) and \(M_{01} = M_1 M_0 \) are sufficient to satisfy the claim of the theorem.*
Bivariate interpolatory schemes associated to M_0 and M_1

Smith factorizations of M_0, M_1:

$$
M_0 = \begin{bmatrix}
4 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 3 \\
-1 & 3
\end{bmatrix}
\begin{bmatrix}
1 & -2 \\
-1 & 3
\end{bmatrix},
$$

$$
M_1 = \begin{bmatrix}
5 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 3 \\
-1 & 3
\end{bmatrix}
\begin{bmatrix}
1 & -2 \\
-1 & 3
\end{bmatrix}.
$$
Bivariate interpolatory schemes associated to M_0 and M_1

Possible choices for the ternary interpolatory schemes

- piecewise linear interpolant:

$$b_2 = \frac{1}{3} (\ldots, 0, 1, 2, 3, 2, 1, 0, \ldots)$$
Bivariate interpolatory schemes associated to \(M_0 \) and \(M_1 \)

Possible choices for the ternary interpolatory schemes

- piecewise linear interpolant:
 \[
 b_2 = \frac{1}{3} (\ldots, 0, 1, 2, 3, 2, 1, 0, \ldots)
 \]

- four point scheme based on local cubic interpolation
 \[
 b_2 = \frac{1}{81} (\ldots, 0, -4, -5, 0, 30, 60, 81, 60, 30, 0, -5, -4, 0, \ldots)
 \]
Bivariate interpolatory schemes associated to M_0 and M_1

The schemes are obtained from

$$b^\#_M(z) = b^\#_\Sigma (z^\Theta)$$

which result in the following two symbols

$$A^\#_1(z_1, z_2) = \frac{z_1^{-2}}{3} \left(1 + z_1 + z_1^2\right)^2,$$

$$A^\#_2(z_1, z_2) = -\frac{z_1^{-5}}{81} \left(1 + z_1 + z_1^2\right)^4 \left(4z_1^2 - 11z_1 + 4\right),$$
Theorem
Suppose:

- $b_j, j = 1, \ldots, s$ define univariate subdivision schemes with scaling factors $\sigma_j \geq 1$
- $S_{b_j}1 = 1$.

Then M is a convergent subdivision scheme with dilation matrix M iff the vector scheme $S_B \Sigma$ defined by

$$\nabla D (\Theta' \Theta) - 1 S_B \Sigma = S_B \Sigma \nabla$$

satisfies

$$1 > \rho_\infty (S_B \Sigma | \nabla) := \lim_{n \to \infty} \sup \| \nabla c \| \leq 1 \frac{\| S_n B \Sigma \nabla c \|}{n}.$$
Theorem
Suppose:

- b_j, $j = 1, \ldots, s$ define univariate subdivision schemes with scaling factors $\sigma_j \geq 1$
- $S_{b_j}1 = 1$.

Then b_M is a convergent subdivision scheme with dilation matrix M iff the vector scheme S_{B_S} defined by
\[\nabla D_{(\Theta', \Theta)^{-1}} S_{b_S} = S_{B_S} \nabla \]
satisfies
\[1 > \rho_{\infty} (S_{B_S} | \nabla) := \lim_{n \to \infty} \sup_{\|\nabla c\| \leq 1} \left\| S_{B_S}^n \nabla c \right\|^{1/n}. \]

where

- D_{Λ} is the dilation operator $D_{\Lambda}c = c(\Lambda \cdot)$
- ∇ is the forward difference operator
\[\nabla c = [c(\cdot + \epsilon_j) - c : j = 1, \ldots, s] \]
$A^\#_1(z_1, z_2) = \frac{z_1^{-2}}{3} (1 + z_1 + z_1^2)^2$, $M_0 = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$
\[A^\#_1(z_1, z_2) = \frac{z_1^{-2}}{3} (1 + z_1 + z_1^2)^2, \quad M_1 = \begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix} \]
\[A_2^\#(z_1, z_2) = -\frac{z_1^{-5}}{81} (1 + z_1 + z_1^2)^4 (4z_1^2 - 11z_1 + 4), \]
\[M_0 = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \]
\[A_2^\#(z_1, z_2) = -\frac{z_1^{-5}}{81} (1 + z_1 + z_1^2)^4 (4z_1^2 - 11z_1 + 4), \]
\[M_1 = \begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix} \]
Filter bank associated to M_0

$$A^h_1(z_1, z_2) = \frac{z_1^{-2}}{3} (1 + z_1 + z_1^2)^2$$ and M_0

Analysis

$$F_0 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}, \quad F_1 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & -\frac{2}{3} & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}, \quad F_2 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{2}{3} & 0
\end{bmatrix}$$

Synthesis

$$G_0 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 1 & \frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}, \quad G_1 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}, \quad G_2 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}$$
Filter bank associated to M_1

\[A_1^\#(z_1, z_2) = \frac{z_1^{-2}}{3} (1 + z_1 + z_1^2)^2 \text{ and } M_1 \]

Analysis

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \quad \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{2}{3} & 0 \\
\end{bmatrix} \quad \begin{bmatrix}
0 & -\frac{2}{3} & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Synthesis

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 1 & \frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \quad \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\end{bmatrix} \quad \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Grazie!