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Expanding matrices

Let M € Z°** be an expanding matrix, i.e.

o all its its eigenvalues are larger than one in modulus
o [[M~"]| =0

4

as n increases, M—"7Z°* — R®
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Expanding matrices

Let M € Z°** be an expanding matrix, i.e.

o all its its eigenvalues are larger than one in modulus
o [IM=7] =0

4

as n increases, M—"7Z°* — R®

o M defines a sampling lattice
o d = |det(M)| is the number of cosets
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The cosets have the form
MZ+ ¢, j=0,...,d-1

where
& € M0, 1)° () Z°

are the coset representatives.

It is well known that
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Isotropy/Anisotropy
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Down/upsampling

Let ¢ € ¢(Z°) be a given signal.
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Down/upsampling

Let ¢ € ¢(Z°) be a given signal.

o Downsampling operator | associated to M:

Imc=c(M)
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Down/upsampling

Let ¢ € ¢(Z°) be a given signal.

o Downsampling operator | associated to M:
Imc=c(M)

o Upsampling operator 1), associated to M:

c(M1a) if a e MZs
i ca) = 4 M) et
0 otherwise
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Filtering

o Filter operator F:

Fe=fxc=> f(-—a)(a)

a€Zs

where f = Fo = (f(«) : a € Z°) is the impulse
response of F
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d-channel filter bank
Critically sampled: d = |det M|
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d-channel filter bank
Critically sampled: d = |det M|
o Analysis filter:
F : ((Z°) — ¢4(Z°)
Fc=[m Fic : j=0,...,d —1]
o Synthesis filter:
G : 19(Z%) — U(Z°)

d
G[Cj Z_j:O,...,d—].]:ZGjTMcj,
Jj=0
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d-channel filter bank
Critically sampled: d = |det M|
o Analysis filter:
F : ((Z°) — ¢4(Z°)
Fc=[m Fic : j=0,...,d —1]
o Synthesis filter:
G : 19(Z%) — U(Z°)

d
G[Cj Z_j:O,...,d—].]:ZGjTMcj,
Jj=0

Perfect reconstruction:
GF =1
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d-channel filter bank

By perfect reconstruction:

20
1
F G ct G
c— ) = |—=1| —>c¢
: d
1
Cd—1

Fo, Gg — low-pass
Fi, Gj, j >0 — high-pass

Multiresolution decomposition ...
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Iterated filter bank
MRA structure...
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Observe that

Glte=grtme= Y g(-— Ma)c(a)

a€EZS

i.e. all reconstruction filters act as stationary subdivision
operators with dilation matrix M.
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Stationary subdivision

Subdivision operator:
S = Sam: UZ%) — U(Z°)
defined by

¢t = Sl — Z a(- — Ma)c”(a)

a€Zs

where M € Z°*° is expanding
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Multiple subdivision
o Consider a set of a finite number of dilation matrices
(M) : j € Zn)

where Z,, = {0,...,m—1} for me N.
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Multiple subdivision
o Consider a set of a finite number of dilation matrices
(M) : j € Zn)

where Z,, = {0,...,m—1} for me N.
o Associate a mask to each M;:

a el(Z°), j€ln
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Multiple subdivision
o Consider a set of a finite number of dilation matrices
(M) : j € Zn)

where Z,, = {0,...,m—1} for me N.
o Associate a mask to each M;:

a el(Z°), j€ln

Together, a; and M; define m stationary subdivision
operators
Sj = Saj,l\/lj
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Multiple subdivision

Call
e=(€1,...,€6,) € LN

a digit sequence of length n =: |e|.
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Multiple subdivision

Call
e=(€1,...,€6,) € LN

a digit sequence of length n =: |e|.

We collect all finite digit sequences in

z, =]z,

neN

and extend |e| canonically to € € Z*.
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Multiple subdivision

Consider the subdivision operator:

Se =S¢, Sq-
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Multiple subdivision
Consider the subdivision operator:

Se=S., S,

For any € € Z7, there exists a mask
a. = S0
such that

Sc=Y a(—Ma)c(a), celZ),

a€Zs

where
M.:=M,, - M., n=le|.
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Multiple subdivision

Values of S.c = approximations to a function on M-1Z°.
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Multiple subdivision

Values of S.c = approximations to a function on M-1Z°.

In order for M~1Z* to tend to R:

o each matrix M; must be expanding,
o all the matrices M, must be expanding
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Multiple subdivision
Values of S.c = approximations to a function on M-1Z°.

In order for M-1Z* to tend to RS:

o each matrix M; must be expanding,
o all the matrices M, must be expanding

4

The matrices M, must all be jointly expanding i.e.

lim ||M*|| =0, (1)

|e| =00
or, equivalently,
,0(/\/71-_1 ; jEZm) <1

(joint spectral radius condition)
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Multiple subdivision

Example: adaptive subdivision/discrete shearlets

Based on:
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Multiple subdivision

Example: adaptive subdivision/discrete shearlets
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o parabolic scaling { A }
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Multiple subdivision

Example: adaptive subdivision/discrete shearlets

Based on:

. . 2
o parabolic scaling { A }

shear 11
[*] (e 1
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Multiple subdivision

Example: adaptive subdivision/discrete shearlets

Based on:

. . 2
o parabolic scaling { A }

shear 11
[*] (e 1

What about other choices?
Case study ...
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Multiple d-channel filter bank

For each k € Zp,
o Analysis filters: Fy : £(Z°) — ¢9(Z°) acting as

FkC:[\l,/\/]k Fk’jC Zj:O,...,d—l]

Multiple multiresolution analysis




Multiple d-channel filter bank

For each k € Zp,
o Analysis filters: Fy : £(Z°) — ¢9(Z°) acting as

FkC:[\l,/\/]k Fk’jC Zj:O,...,d—l]

o Synthesis filters: Gy : (9(Z°) — ¢(Z°), acting as

Gk[Cij:O —1] ZGk,JTMkCJ’
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Multiple d-channel filter bank

For each k € Zp,
o Analysis filters: Fy : £(Z°) — ¢9(Z°) acting as

FkCZ[~LI\/Ik Fk’jC Zj:O,...,d—l]

o Synthesis filters: Gy : (9(Z°) — ((Z°), acting as

Gk[Cij:O —1] ZGk,JTMkCJ’

Perfect reconstruction:

Gka:/, kEZm
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Symbol notation

Given a finitely supported a
o Symbol:

a'(z) = Z a(a)z”

a€Zs
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Symbol notation

Given a finitely supported a
o Symbol:

a'(z) = Z a(a)z”

a€Zs

o Subsymbols:

agj(z) = Z a(Ma+¢)z%, j=0,...,d -1
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Filter bank construction

Start from the lowpass reconstruction filter Gy associated
to a mask a.
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Filter bank construction

Start from the lowpass reconstruction filter Gy associated
to a mask a.

Go can be completed to a perfect reconstruction filter
bank if and only if a is unimodular:

o algebraic property

o involved in general

o simple for interpolatory schemes
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Filter bank construction

Start from the lowpass reconstruction filter Gy associated
to a mask a.

Go can be completed to a perfect reconstruction filter
bank if and only if a is unimodular:

o algebraic property

o involved in general

o simple for interpolatory schemes

In 1D — a*(z) and a*(—z) have no common zeros.
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Filter bank construction

Simplest filter bank — lazy filters: translation operators
T¢; s i:O,...,d—l

In fact

d—1
[ = ZT&' T\I’T—En
i=0
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Filter bank construction

Simplest filter bank — lazy filters: translation operators
T¢; s iZO,...,d—l

In fact

d—1
[ = ZT&' T T—¢;s
i=0

It:

o decomposes a signal modulo M in the analysis

o recombines the components in the synthesis
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Filter bank construction

If a defines an interpolatory subdivision scheme, then Gy
can be easily completed to a perfect reconstruction filter
bank.
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Filter bank construction

If a defines an interpolatory subdivision scheme, then Gy
can be easily completed to a perfect reconstruction filter

bank.

A subdivision operator S, with dilation matrix M is called
interpolatory if

S.,c(M-)=c¢, forany c € {(Z°)
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Prediction—correction scheme

The completion of an interpolatory a yields the
prediction—correction scheme
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Prediction—correction scheme

The completion of an interpolatory a yields the
prediction—correction scheme

o Analysis part:
FOZI, Fj:Tfﬁj(/_Sa\l/M); j:].,...,d—].,
o Synthesis part:

Go and G=1, j=1,...,d-1
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Prediction—correction scheme

In terms of symbols:

R =1 F)=29-a(z"), j=1,....d-1

J

Gi(z) = a'(z), Fiz)=2% j=1,...,d—1

J
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A special construction of s-variate
interpolatory schemes

Let
M= 0xe’

be a Smith factorization of the expanding matrix M, where

01
02

Os

and ©, © unimodular
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A special construction of s-variate
interpolatory schemes

@ Find s univariate interpolatory subdivision schemes
bj J = 1, 50008

with scaling factors or “arity” oj;
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A special construction of s-variate
interpolatory schemes

@ Find s univariate interpolatory subdivision schemes
bj J = 1, 50008

with scaling factors or “arity” oj;
@ Consider the tensor product

by = ® b;, bs(a) = H bi (o)), «ae€Z,
j=1 j=1

which is an interpolatory subdivision scheme for the
diagonal scaling matrix ¥, i.e.

be(X) =6

Multiple multiresolution analysis




A special construction of s-variate
interpolatory schemes

O Set
bM = bz(e_l')
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A special construction of s-variate
interpolatory schemes

O Set
bM = bz(e_l')

Then:

by defines an interpolatory scheme for the dilation matrix
M.
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A special construction of s-variate
interpolatory schemes

9O Set
bM = bz(e_l')

Then:

by defines an interpolatory scheme for the dilation matrix
M.

In terms of symbols:

bia(2) = b (2°)
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A special choice of scaling matrices

We are considering the matrices

1 1
Mo.:[l _2]
2 —1
M12251M0:|:1 _2:|,

where we make use of the shear matrices

1 g .
Sj::|:0-:{:|, JjE€Z.
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A special choice of scaling matrices

It is easily verified that

o det MO = det M1 =-3
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A special choice of scaling matrices

It is easily verified that
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o My is anisotropic (eigenvalues: 1 (14 1/13)
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A special choice of scaling matrices

It is easily verified that
o det My = det M} = —3
o My is anisotropic (eigenvalues: 1 (1£+/13)
o M is isotropic (eigenvalues: ++/3)
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A special choice of scaling matrices

It is easily verified that
o det My = det M; = -3
o My is anisotropic (eigenvalues: % (1 + \/ﬁ)
o M is isotropic (eigenvalues: ++/3)

o My and M, are jointly expanding so they define a
reasonable subdivision scheme.
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Coset representation: M
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Coset representation: M,
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The subdivision process

Sequence0 0 0 0 0 O

Initial data

MO MO MO MO MO

MO MO MO MO MO MO MO MO MO MO MO MO MO M0 MO
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The subdivision process

Sequence1 1 1 1 1 1

Initial data

M1 M1 M1 M1 M1
M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1

k2 k3
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The subdivision process

Sequence0 1 01 0 1

Initial data

MO M1 M1 MO M1

MO M1 MO M1 M1 MO M1 MO M1 MO M1 MO M1 MO M1

'
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The subdivision process

Sequence1 01 010

Initial data

M1 MO MO M1 MO

M1 MO M1 MO MO M1 MO M1 MO M1 MO M1 MO M1 MO
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In "Multiple MRA" one considers functions of the form

¢o(M. - —a), €T’
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In "Multiple MRA" one considers functions of the form

do(M. - —a), €z’

o ¢, : limit function of subdivision
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In "Multiple MRA" one considers functions of the form

do(M. - —a), €z’

o ¢, : limit function of subdivision

o Role of M.: scale & rotate

Can we get "all rotations” by appropriate €?
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In "Multiple MRA" one considers functions of the form

do(M. - —a), €z’

o ¢, : limit function of subdivision

o Role of M.: scale & rotate

Can we get "all rotations” by appropriate €?

— Slope resolution
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Slope resolution
Action of:
MMy (blue), MoM; (red), MiMy (green), MoMy (cyan)

on the unit vectors

= r
21 08 06 04 02 0 02 04 06 08 1 -4
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Slope resolution

Action of:
M1M1M1M1M1M1 (blue), MoMlMoMlMoMl (recl),
M1MOM1MOM1M0 (green), MoMoMoMoMoMo (cgan)

on the unit vectors

150

100 -
08

06
50

-02
-04
-501
-06

-08

-100

_150 L L L L L
-150 -100 -50 0 50 100 150
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Slope resolution

Can all directions, i.e., all lines through the origin, be
generated by applying an appropriate M, to a given
reference line?
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Slope resolution

Given the reference line
L,:=Rx, xeR?
and a target line
L,:=Ry, yc¢ R?
we ask whether there exists € € Z7, such that

L, ~ M.Ly.

Multiple multiresolution analysis
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Slope resolution

We represent lines by means of slopes, setting
L(s)::Rli}, s € RU{xo0},

where s = +00 corresponds to (the same) vertical line.
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Slope resolution

We represent lines by means of slopes, setting
1
L(s)::Rls}, s € RU{xo0},
where s = +00 corresponds to (the same) vertical line.

Theorem
For each s € (0,3), any s’ € R and any § > 0 there exists
€ € Z;, such that

|s" — s <4, L(s.) = M.Ls.
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Slope resolution

We represent lines by means of slopes, setting
1
L(s)::Rls}, s € RU{xo0},
where s = +00 corresponds to (the same) vertical line.

Theorem
For each s € (0,3), any s’ € R and any § > 0 there exists
€ € Z;, such that

|s" — s <4, L(s.) = M.Ls.
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Slope resolution

We represent lines by means of slopes, setting
1
L(s)::R[s}, s € RU{xo0},
where s = +00 corresponds to (the same) vertical line.

Theorem
For each s € (0,3), any s’ € R and any § > 0 there exists
€ € Z;, such that

|s" — s <4, L(s.) = M.Ls.

Indeed even combinations of My; = MyM; and
Moy = My My are sufficient to satisfy the claim of the
theorem.

Multiple multiresolution analysis
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Bivariate interpolatory schemes
associated to My and M;

Smith factorizations of My, M;:
4 1 1 1 -2
wo= Dol a5 7
51 1 1 -2
o= Dol M)A T
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Bivariate interpolatory schemes
associated to My and M;

Possible choices for the ternary interpolatory schemes
o piecewise linear interpolant:

by=>(...,0,1,2,3,2,1,0,...)

Wl
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Bivariate interpolatory schemes
associated to My and M;

Possible choices for the ternary interpolatory schemes

o piecewise linear interpolant:

1
bp=3(...0.1,2321,0,..)

o four point scheme based on local cubic interpolation

1
by = 2= (...,0,~4,5,0,30,60,81,60,30,0, -5, ~4,0,...)
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Bivariate interpolatory schemes
associated to My and M;

The schemes are obtained from

biy(z) = bﬁz (ze)
which result in the following two symbols
-2

Z
Az, 2) = 17 (1+z+2)°,

-5

Al(z,2) = _281_1 (1+z+ 212)4 (427 — 11z + 4),

Multiple multiresolution analysis
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Suppose:

o b, j=1,...,s define univariate subdivision schemes
with scaling factors o; > 1

o Spl=1.



Suppose:
o bj, j=1,...,s define univariate subdivision schemes
with scaling factors o; > 1
o Sp1=1

Then by is a convergent subdivision scheme with dilation
matrix M iff the vector scheme Sg, defined by
VDerey-15s = Sg, V satisfies

. n 1/n
1> poe (Sey | V) := lim sup ||SE V|| "
70| Vell<1
where
o Dy is the dilation operator Dyc = c(/-)

o V is the forward difference operator
Ve=le(-+¢)—c : j=1,...,9]



_2 o Multiple multiresolution analysis
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Az, 2,) = —% (142 +22)" (422 — 117 + 4),
My — 1 1

1 -2
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Filter bank associated to M,

Az, 2) = 213;2 (14 2z + z2)° and My
Analysis

Fo Fi F»
00000 0 0 00 O 0 00 0 ©
01000 0 -2 10 -3 000 0 O
00000 0 0 00 O -1 01 -2 0
Synthesis
Go G Gy

0000 O 00000 0000O
[%%1%%] [00010] [ooooo]
0000 O 00000 00010
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Filter bank associated to M;

Atlt(Zl,ZQ) = g (1 +z1 + 212)2 and M1
Analysis

Fo Fi F»
00000 0 00 0 © 0 0 00 ©
00100 0 00 0 O 0 -2 10 -1
00000 -1 01 =20 0 0 00 O
Synthesis
Go G Gy

0000 O 00000 0000O
[%%1%%] [00000] [00010]
0000 O 00100 00000
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Crazie!

(=] F
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