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Fundamental Problem

Kernel-based Interpolation

Given data (x i , yi)
N
i=1, use a data-dependent linear function space

s(x) =
N∑

j=1

cjK (x ,x j), x ∈ Ω ⊆ Rd

with K : Ω× Ω→ R a positive definite reproducing kernel.

To find cj solve the interpolation equations

s(x i) = yi , i = 1, . . . ,N,

which leads to a linear system Kc = y with symmetric positive definite
– often ill-conditioned – system matrix

Kij = K (x i ,x j), i , j = 1, . . . ,N.
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Fundamental Problem

Common Complaints About Kernels

Kernel methods suffer from
numerical instability,
the presence of free parameter(s),
high computational cost.

In this talk we will address the first two issues:

We obtain stable methods by working with a “better” basis which
leads to a Hilbert-Schmidt SVD of the matrix K.
Free parameters can be “optimally” chosen by using statistical
methods such as MLE, which are significantly enhanced by using
the HS-SVD.

Greg Fasshauer Hilbert-Schmidt SVD 4



Fundamental Problem

Common Complaints About Kernels

Kernel methods suffer from
numerical instability,
the presence of free parameter(s),
high computational cost.

In this talk we will address the first two issues:

We obtain stable methods by working with a “better” basis which
leads to a Hilbert-Schmidt SVD of the matrix K.
Free parameters can be “optimally” chosen by using statistical
methods such as MLE, which are significantly enhanced by using
the HS-SVD.

Greg Fasshauer Hilbert-Schmidt SVD 4



Hilbert-Schmidt SVD and General RBF-QR Algorithm

Hilbert-Schmidt Theory

We assume that we know a Hilbert-Schmidt expansion (or Mercer
series expansion) of our kernel K :

K (x , z) =
∞∑

n=1

λnϕn(x)ϕn(z),

where (λn, ϕn) are orthonormal eigenpairs of a Hilbert-Schmidt integral
operator TK : L2(Ω, ρ)→ L2(Ω, ρ) defined as

(TK f )(x) =

∫
Ω

K (x , z)f (z)ρ(z)dz ,

where Ω ⊂ Rd and ‖K‖L2(Ω×Ω,ρ×ρ) <∞.
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Hilbert-Schmidt SVD and General RBF-QR Algorithm

Gaussian Eigenfunctions
[Rasmussen/Williams (2006), F./McCourt (2012)]

e−ε
2(x−z)2

=
∞∑

n=0

λnϕn(x)ϕn(z)

where

λn =

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)n

, ϕn(x) = γne−δ
2x2

Hn(αβx)

with Hn Hermite polynomials,

β =

(
1 +

(
2ε
α

)2
) 1

4

, γn =

√
β

2nΓ(n + 1)
, δ2 =

α2

2

(
β2 − 1

)
and {ϕn}∞n=0 (ρ-weighted) L2-orthonormal, i.e.,∫ ∞

−∞
ϕm(x)ϕn(x) ρ(x) dx = δmn, ρ(x) =

α√
π

e−α
2x2
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Hilbert-Schmidt SVD and General RBF-QR Algorithm

Multivariate Eigenfunction Expansion

Use tensor product form of the Gaussian kernel

K (x , z) = e−ε
2‖x−z‖2

2 = e
−

d∑̀
=1
ε2(x`−z`)2

=
d∏
`=1

e−ε
2(x`−z`)2

x = (x1, . . . , xd ) ∈ Rd ,

where

λn =
d∏
`=1

λn`
, ϕn(x) =

d∏
`=1

ϕn`
(x`).

Different shape parameters ε` for different space dimensions allowed
(i.e., K may be anisotropic).
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Hilbert-Schmidt SVD and General RBF-QR Algorithm

Fundamental idea: use the eigen-expansion of the kernel K to rewrite
the matrix K from the interpolation problem as

K =

K (x1,x1) . . . K (x1,xN)
...

...
K (xN ,x1) . . . K (xN ,xN)



=

ϕ1(x1) . . . ϕM (x1) . . .
...

...
ϕ1(xN ) . . . ϕM (xN ) . . .



λ1

. . .
λM

. . .




ϕ1(x1) . . . ϕ1(xN )

...
...

ϕM (x1) . . . ϕM (xN )
...

...



Since

K (x i ,x j) =
∞∑

n=1

λnϕn(x i)ϕn(x j) ≈
M∑

n=1

λnϕn(x i)ϕn(x j)

accurate reconstruction of all entries of K will likely require M > N.
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Hilbert-Schmidt SVD and General RBF-QR Algorithm

But we can’t compute with infinite matrices, so we choose a truncation
value M (supported by λn → 0 as n→∞, more later) and rewrite

K =

K (x1,x1) . . . K (x1,xN)
...

...
K (xN ,x1) . . . K (xN ,xN)



=

ϕ1(x1) . . . ϕM(x1)
...

...
ϕ1(xN) . . . ϕM(xN)


︸ ︷︷ ︸

=Φ


λ1

. . .
λM


︸ ︷︷ ︸

=Λ

ϕ1(x1) . . . ϕ1(xN)
...

...
ϕM(x1) . . . ϕM(xN)


︸ ︷︷ ︸

=ΦT

Since

K (x i ,x j) =
∞∑

n=1

λnϕn(x i)ϕn(x j) ≈
M∑

n=1

λnϕn(x i)ϕn(x j)
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Hilbert-Schmidt SVD and General RBF-QR Algorithm

The matrix K is often ill-conditioned, so forming K and computing with
it is not a good idea.

The eigen-decomposition
K = ΦΛΦT

provides an accurate (elementwise) approximation of K without ever
forming it.

However, it is not recommended to directly use this decomposition
either since all of the ill-conditioning associated with K is still present –
sitting in the matrix Λ.

We now use mostly standard numerical linear algebra to isolate some
of this ill-conditioning and develop the Hilbert-Schmidt SVD and a
general RBF-QR algorithm.
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Hilbert-Schmidt SVD and General RBF-QR Algorithm

Details of the Hilbert-Schmidt SVD

Assume M > N, so that Φ is “short and fat” and partition Φ:ϕ1(x1) . . . ϕN(x1) ϕN+1(x1) . . . ϕM(x1)
...

...
...

...
ϕ1(xN) . . . ϕN(xN) ϕN+1(xN) . . . ϕM(xN)

 =

 Φ1︸︷︷︸
N×N

Φ2︸︷︷︸
N×(M−N)

 .

Then

K = ΦΛΦT

= Φ

(
Λ1

Λ2

)(
ΦT

1
ΦT

2

)
= Φ

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
︸ ︷︷ ︸

= Ψ

Λ1ΦT
1︸ ︷︷ ︸

=M
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Hilbert-Schmidt SVD and General RBF-QR Algorithm

There are at least two ways to interpret the Hilbert-Schmidt SVD

K = ΨΛ1ΦT
1

We’ve found an invertible M = Λ1ΦT
1 such that Ψ = KM−1 is better

conditioned than K  “better basis”.
We’ve diagonalized the matrix K, i.e.,

K = ΨΛ1ΦT
1 ,

where
Λ1 is a diagonal matrix of Hilbert-Schmidt singular values,
Ψ and Φ1 are matrices generated by orthogonal eigenfunctions (but
not orthogonal matrices).

Remark
The matrix Ψ is the same for both interpretations.

It can be computed stably.
We get a well-conditioned linear system Ψb = y (where b = Mc)
for the interpolation problem.
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Hilbert-Schmidt SVD and General RBF-QR Algorithm

Taking a closer look at the matrix Ψ, we see that

Ψ = (Φ1 Φ2)

(
IN

Λ2ΦT
2 Φ−T

1 Λ−1
1

)
= Φ1 + Φ2

[
Λ2ΦT

2 Φ−T
1 Λ−1

1

]
.

We can interpret this as having a new basis ψ(·)T = (ψ1(·), . . . , ψN(·))
for the interpolation space span {K (·,x1), . . . ,K (·,xN}} consisting of
the appropriately corrected first N eigenfunctions:

If we let φ(·)T = (ϕ1(·), . . . , ϕN(·), ϕN+1(·), . . . , ϕM(·)), then we can
rewrite our kernel basis using the Hilbert-Schmidt SVD

k(x)T = φ(x)T
(

IN
Λ2ΦT

2 Φ−T
1 Λ−1

1

)
Λ1ΦT

1 = ψ(x)T Λ1ΦT
1 .

The data-dependence of the new basis is captured by the “correction”
term. The new basis is more stable since we have removed Λ1.
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Hilbert-Schmidt SVD and General RBF-QR Algorithm

The QR in RBF-QR

Additional stability in the computation of the correction matrix[
Λ2ΦT

2 Φ−T
1 Λ−1

1

]
,

in particular, in the formation of ΦT
2 Φ−T

1 , is achieved via a QR
decomposition of Φ, i.e.,

(
Φ1 Φ2

)
= Q

(
R1︸︷︷︸

N×N

R2︸︷︷︸
N×(M−N)

)

with orthogonal N × N matrix Q and upper triangular matrix R1.

Then we have
ΦT

2 Φ−T
1 = RT

2 QT QR−T
1 = RT

2 R−T
1 .

This idea appeared in [Fornberg/Piret (2008)].
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Hilbert-Schmidt SVD and General RBF-QR Algorithm
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Hilbert-Schmidt SVD and General RBF-QR Algorithm

Summary of Method

Instead of solving the “original” interpolation problem with
ill-conditioned matrix K

Kc = y ,

leading to inaccurate coefficients which then need to be multiplied
against poorly conditioned basis functions, we now solve

Ψb = y

for a new set of coefficients which we then evaluate via

s(x) =
N∑

j=1

bjψj(x),

i.e., using the new basis.
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Implementation for Compact Matérn Kernels

General Implementation

It is crucial to know the Hilbert-Schmidt expansion of K :

K (x , z) =
∞∑

n=1

λnϕn(x)ϕn(z)

The multivariate Gaussian kernels mentioned earlier were used in
[F./Hickernell/Woźniakowski (2012)] to prove
dimension-independent convergence rates
[F./McCourt (2012)] to obtain and implement a stable GaussQR
algorithm.

We now discuss the implementation for generalizations of the
Brownian bridge kernel

K (x , z) = min(x , z)− xz, x , z ∈ [0,1],

which we call compact Matérn kernels [Cavoretto/F./McCourt (2013)].
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Implementation for Compact Matérn Kernels

We define compact Matérn kernels as Green’s kernels of(
− d2

dx2 + ε2I

)β
K (x , z) = δ(x − z), x , z ∈ [0,1], β ∈ N, ε ≥ 0,

subject to

d2ν

dx2ν K (0, z) =
d2ν

dx2ν K (1, z) = 0, ν = 0, . . . , β − 1.

The Hilbert-Schmidt expansion for compact Matérn kernels is

Kβ,ε(x , z) =
∞∑

n=1

2(
n2π2 + ε2

)β sin (nπx) sin (nπz) ,

i.e., the eigenvalues and eigenfunctions are

λn =
1(

n2π2 + ε2
)β , ϕn(x) =

√
2 sin (nπx) . (1)
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Implementation for Compact Matérn Kernels

Clearly,
the eigenfunctions are bounded by

√
2,

and, for a fixed value of ε, the eigenvalues decay as n−2β.

Therefore the truncation length M needed for accurate representation
of the entries of K can be easily determined as a function of β and ε:

To ensure that we keep the first M significant terms we take M such
that

λM < εmachλN , M > N.

Using the explicit representation of the eigenvalues, we solve for M:

M(β, ε; εmach) =

⌈
1
π

√
ε
−1/β
mach (N2π2 + ε2)− ε2

⌉
.
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Implementation for Compact Matérn Kernels

Program (MaternQRSolve.m)
function yy = MaternQRSolve(x,y,ep,beta,xx)
phifunc = @(n,x) sqrt(2)*sin(pi*x*n);
N = length(x);
M = ceil(1/pi*sqrt(eps^(-1/beta)*(N^2*pi^2+ep^2)-ep^2));
n = 1:M;
Lambda = diag(((n*pi).^2+ep^2).^(-beta));
Phi = phifunc(n,x);
[Q,R] = qr(Phi);
R1 = R(:,1:N); R2 = R(:,N+1:end);
Rhat = R1\R2;
Lambda1 = Lambda(1:N,1:N);
Lambda2 = Lambda(N+1:M,N+1:M);
Rbar = Lambda2*Rhat’/Lambda1;
Psi = Phi*[eye(N);Rbar];
b = Psi\y;
Phi_eval = phifunc(n,xx);
yy = Phi_eval*[eye(N);Rbar]*b;

end
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Application 1: Basic Function Approximation

Standard RBF vs. MatérnQR Interpolation
We use

Kβ,ε with β = 7 and ε = 1
N = 21 uniform samples of f (x) = (1− 4x)14

+ (4x − 3)14
+
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Application 2: Optimal Shape Parameters via MLE

Likelihood Functions for Gaussian Random Fields

Kernel-based interpolation has an analog in statistics called kriging.

If, instead of trying to recover a function, we treat our scattered data as
samples of one realization of a Gaussian random field, we can
prescribe a positive definite kernel K as the presumed covariance
between realizations of the Gaussian random field.

The likelihood function of a zero-mean Gaussian random field (the
probability of the data (x i , yi)

N
i=1 given the kernel K with shape

parameters θ = (ε, β)) is

L(θ; y) = p(y |θ) =
1√

(2πσ2)N det(K)
exp

(
− 1

2σ2 yT K−1y
)

K is the kernel interpolation matrix from before, σ2 is the process
variance.
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Application 2: Optimal Shape Parameters via MLE

Maximum Likelihood Estimation (MLE)

Usually we minimize the negative (concentrated) log-likelihood:

L̃(θ; y) =
1
N

log det(K) + log
(

yT K−1y
)

︸ ︷︷ ︸
=Q(y)

.

This requires evaluating log det(K) and log Q(y), which, given the
ill-conditioning of K are both bound to cause trouble.

Luckily, we have developed the Hilbert-Schmidt SVD

K = ΨΛ1ΦT
1

to help in both cases.
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Application 2: Optimal Shape Parameters via MLE

Computing log det(K)

We use the Hilbert-Schmidt SVD to write

det(K) = det(ΨΛ1ΦT
1 ) = det(Ψ) det(Λ1) det(Φ1)

Evaluating det(Λ1) can be done analytically and det(Ψ) and det(Φ1)
can be computed stably using standard techniques.
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Application 2: Optimal Shape Parameters via MLE

Computing log Q(y)

We remember that the Hilbert-Schmidt SVD K = ΨΛ1ΦT
1 gives us

Kc = y ⇐⇒ Ψ Λ1ΦT
1 c︸ ︷︷ ︸

=b

= y . (2)

Straightforward computation shows that

Q(y) = yT K−1y = bT Ab,

where
A = Λ−1

1 + BT Λ2B, B = ΦT
2 Φ−T

1 Λ−1
1

so that A is clearly symmetric and positive definite.
In particular,

Q(y) = bT Λ−1
1 b + bT BT Λ2Bb ≥ bT Λ−1

1 b,

where b is computed stably via (2) and Λ−1
1 is given analytically.
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Application 2: Optimal Shape Parameters via MLE
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Q(y) = bT Ab = bT Λ−1
1 b + bT BT Λ2Bb

Note that Q(y) = yT K−1y = cT Kc = bT Ab is the native space norm
of the interpolant.
To statisticians this is known as the Mahalanobis distance.
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Application 2: Optimal Shape Parameters via MLE

Stable MLE for Gaussian Interpolation in 1D

Figure: N = 15 Chebyshev points for f (x) = x + 1
1+x2 on [−1,1].

L̃(ε; y) =
1
N

log det(K) + log
(

yT K−1y
)
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Application 2: Optimal Shape Parameters via MLE

Stable MLE for Gaussian Interpolation in 5D

y(x) = sin(mean(x)), using N Halton points
solid lines for HS-SVD, dashed lines for direct solve
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Application 2: Optimal Shape Parameters via MLE

MLE as a consistent predictor of “optimal” ε

True solution (left): overall optimal values (red dot):

ε = 1.333521, N = 140, Error = 5.8378× 10−17

MLE (right): overall “optimal” values (red dot):

ε = 1.778279, N = 60, Error = 6.29907× 10−16
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Application 2: Optimal Shape Parameters via MLE

MLE and flat polynomial limits

Figure: N = 15 Chebyshev points for y(x) = x3 − 3x2 + 2x + 1 and
y(x) = x3 − 3x2 + 2x + 1 + 10−10 cos(10x) on [−1,1].
In both cases, the MLE predicts an ε-value that leads to optimal
accuracy.
However, the MLE does not “allow” the (polynomial) flat limit since
polynomials are not in the native space of Gaussians.
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Summary

Summary

Hilbert-Schmidt/Mercer expansion and Hilbert-Schmidt SVD
provide a general and transparent framework for stable kernel
computation
Implementation depends on availability of Mercer series for
specific kernels

some eigenfunctions are easier to obtain than others
some eigenfunctions are easier to handle than others

Vast applications
function interpolation/approximation
parameter estimation (MLE, GCV)
numerical solution of PDEs (collocation, MFS, MPS)
...

Future outlook
implement for anisotropic Gaussians
HS-SVD for other kernels
MLE for low-rank approximation
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