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Localized kernel bases

Desired to treat large problems where standard basis is
inadequate – often used as a pre-conditioner
Local elements obtained by a difference operator applied
to kernel – considered by Dyn-Levin-Rippa, Rabut,
Buhmann-Dai, Beatson & Powell
We consider local Lagrange functions of Beatson and
Powell – showing rapid decay and Lp stability & most of all
that this method scales: decay of basis elements is
stationary & construction is nearly stationary.

Kernel based quadrature
High performance quadrature rules for a variety of
manifolds – based on an idea for spheres by Sommariva
and Womersley
Weights can be easily calculated
In conjunction with localized bases – calculation of weights
is fast and scales appropriately



Positive definite kernels

For any set of centers Ξ, the collocation matrix

CΞ :=
(
k(ξ, ζ)

)
(ξ,ζ)∈Ξ×Ξ

is symmetric, positive definite.
Interpolation: For any f ∈ C(M) there is a unique
IΞf ∈ S(Ξ) so that IΞf |Ξ = f |Ξ . In this case:
IΞf =

∑
ξ∈Ξ cξk(·, ξ) with CΞ~c = f |Ξ

Native space: There is a Hilbert space of continuous
functions N with k as its reproducing kernel:
f (x) = 〈f , k(x , ·)〉N
The interpolant IΞf to f is the best interpolant from N in the
sense that any s ∈ N for which s |Ξ = f |Ξ has

‖IΞf‖N ≤ ‖s‖N .



Positive definite kernels

(
k(·, ξ)

)
ξ∈Ξ

forms a basis for the space

S(Ξ) = span
ξ∈Ξ

k(·, ξ)

So does the Lagrange basis
(
χξ
)
ξ∈Ξ

, where
χξ =

∑
η∈Ξ Aξ,ηk(·, η) and for all ζ ∈ Ξ, χξ(ζ) = δ(ξ, ζ).

The matrix of Lagrange coefficients
(
Aξ,ζ

)
(ξ,ζ)∈Ξ×Ξ

is the
inverse of the collocation matrix CΞ.

The Lagrange function coefficients satisfy Aξ,η = 〈χξ, χζ〉N .

〈χξ, χζ〉N =
∑
η∈Ξ

Aζ,η〈χξ, k(·, η)〉N =
∑
η∈Ξ

Aζ,ηδ(ξ, η) = Aξ,η.



Sobolev spaces

Assume M is a d dimensional, compact Riemannian manifold
without boundary.

M is a metric space. Basic characteristics of Ξ apply:
fill distance h := maxx∈M dist(x ,Ξ),
separation radius q := minξ∈Ξ dist(ξ,Ξ \ {ξ}),
mesh-ratio ρ = h/q.

M is also a measure space, with |B(x , r)| ∼ rd (for small r ).
Sobolev spaces W τ

2 (M) can also be defined easily – either
via partition of unity and charts or by way of an elliptic
differential operator (like the Laplace–Beltrami operator).
If τ > d/2, then W τ

2 (M) is a reproducing kernel Hilbert
space. Its kernel is positive definite and N = W τ

2 (M).
[Fuselier-Wright, ’11] If M ⊂ Rd+n and φ ∈ C(Rd+n) is an
RBF with native space W N

2 (Rd ), then k : (x , y) 7→ φ(x − y)
has native space W τ

2 (M), τ = N − n
2 .



Kernels with N = W τ
2 (M)

If k : M×M→ R has native space W τ
2 (M)

Lagrange function is bounded in native space norm

‖χξ‖N ≤ Cqd/2−τ.

This is a bump estimate – compare χξ to an interpolant
with support in B(ξ,q).
Lagrange coefficients are uniformly bounded:

|Aξ,ζ | = |〈χξ, χζ〉N | ≤ Cqd−2τ

−→ ‖(CΞ)−1‖∞ ≤ Cqd−2τ (#Ξ)

[De Marchi-Schaback, ’10] If Ξ is sufficiently dense in M,
then a zeros lemma ensures that the Lagrange function is
bounded, independent of #Ξ:

|χξ(x)| ≤ Cqd/2−τhτ−d/2 = Cρτ−d/2



Sobolev kernels (or Sobolev-Matérn kernels)

For open Ω ⊂M, m ∈ N and m > d/2 define the W m
2 (Ω)

inner product as

〈f ,g〉W m
2 (Ω) =

m∑
j=0

∫
Ω
〈∇j f ,∇jg〉x dx

For Ω = M, this is the same as the other definitions of
W m

2 (M).

The Sobolev kernel κm is the reproducing kernel for
N = W m

2 (M).

Equivalently, κm is the fundamental solution for the elliptic
differential operator Lm =

∑m
j=0(∇j)∗∇j .



Lagrange function bounds

For sufficiently dense Ξ, we have the energy bound for
R > 0:

For R > 0, ‖χξ‖W m
2 (M\B(ξ,R)) ≤ Cqd/2−me−ν

R
h

Lagrange functions have pointwise bounds

|χξ(x)| ≤ Cρm−d/2e−ν
dist(ξ,x)

h (H− Narcowich−Ward, ‘10)

(H-N-W, ’10) Boundedness of Lebesgue constant ,
(H-N-Sun-W, ’11) Stability: ‖

∑
ξ∈Ξ aξχξ‖p ∼ q

d
p ‖~a‖`p(Ξ),

(H-N-S-W, ’11) Lp boundedness of L2 projector.
Lagrange coefficients are bounded by

|Aξ,ζ | = |〈χξ, χζ〉W m
2 (M)| ≤ Cqd−2me−

ν
2h dist(ξ,ζ)

Centers more than Kh | log h| away from ξ:

|Aξ,ζ | ≤ Cqd−2mh
νK
2 ≤ Cρh

νK
2 +d−2m



Let Υξ := Ξ ∩ B(ξ,Kh| log h|). If N = #Ξ, then #Υξ ∼ (log N)d .



Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, ’13]
Let Υξ := Ξ ∩ B(ξ,Kh| log h|).
Consider the truncated Lagrange basis

(
χξ
)
ξ∈Ξ

χ̃ξ :=
∑
ζ∈Υξ

Aξ,ζκm(·, ζ)

−→ ‖χ̃ξ − χξ‖∞ ≤ Cρh( Kν
2 −2m)

(Because there are at most N ≤ |M|q−d centers)
Uses only a fraction of the total centers. but requires
calculating all coefficients.

Use instead bξ ∈ S(Υξ), the local Lagrange functions:
bξ(ζ) = δ(ξ, ζ) for all ζ ∈ Υξ.
Complexity of constructing each bξ is O(K 3d | log N|3d ).
The full family (bξ)ξ∈Ξ costs O(K 3dN| log N|3d ).



Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, ’13]
Let Υξ := Ξ ∩ B(ξ,Kh| log h|).
Consider the truncated Lagrange basis

(
χξ
)
ξ∈Ξ

χ̃ξ :=
∑
ζ∈Υξ

Aξ,ζκm(·, ζ)

−→ ‖χ̃ξ − χξ‖∞ ≤ Cρh( Kν
2 −2m)

(Because there are at most N ≤ |M|q−d centers)
Uses only a fraction of the total centers. but requires
calculating all coefficients.
Use instead bξ ∈ S(Υξ), the local Lagrange functions:
bξ(ζ) = δ(ξ, ζ) for all ζ ∈ Υξ.
Complexity of constructing each bξ is O(K 3d | log N|3d ).
The full family (bξ)ξ∈Ξ costs O(K 3dN| log N|3d ).



Local Lagrange bounds: ‖χξ − bξ‖∞ ≤ CρhJ

Since r = (χ̃ξ − bξ) ∈ S(Υξ),

(χ̃ξ − bξ) =
∑
ξ∈Υξ

cξκm(·, ξ), where CΥξ
~c = r

∣∣
Υξ

At the nodes, the error is small:

max
ζ∈Υξ

|r(ζ)| ≤ Cρh
νK
2 −2m

The inverse collocation matrix (CΥξ)−1 = (Aη,ζ)(η,ζ)∈Υξ×Υξ
has `∞ → `∞ norm

‖(CΥξ)−1‖∞ ≤ Cqd−2m (#(Υξ)) ≤ Cq−2m

Coefficients are small:

‖~c‖∞ ≤ Cρq−2mh
νK
2 −2m ≤ Cρh

νK
2 −4m

The uniform error is small:

‖χ̃ξ − bξ‖∞ ≤
∑
ξ∈Υξ

|cξ|‖κm(·, ξ)‖∞ ≤ Cρh
νK
2 −4m−d



Local Lagrange basis summary

Each element uses K | log N|d centers
For sufficiently large K , (bξ)ξ∈Ξ is an Lp-stable, rapidly
decaying basis for S(Ξ):

‖bξ − χξ‖∞ ≤ CρhJ when K =
2
ν

(J + 4m)

Drawback: ν is not known.
Can be used as a preconditioner for interpolation:

CΞA~c = f |Ξ .

For sufficiently large K , QΞf =
∑

ξ∈Ξ f (ξ)bξ behaves like
IΞf =

∑
ξ∈Ξ f (ξ)χξ. Namely,

‖QΞf − f‖∞ ≤ Λdist(f ,S(Ξ))∞ + CρhJ−d‖f‖∞

Drawback: κm is hard to compute.



Quadrature on homogeneous spaces

From [Fuselier - H - Narcowich - Ward - Wright, to appear]
G is a Lie group of isometries of M acting transitively
∀x , y ∈M, ∃g ∈ G y = gx .

∀g ∈ G,
∫
M

f (gx)dx =

∫
M

f (x)dx .

G-invariant, positive definite kernel: k(gx ,gy) = k(x , y)

−→ ∀y ∈M,

∫
M

k(x , y)dx = J0

For s ∈ S(Ξ), s =
∑

ξ∈Ξ aξk(·, ξ)∫
M

s(x)dx =
∑
ξ

aξ
∫
M

k(x , ξ)dx

= J0(1T )a

= J01T
{

C−1
Ξ s|Ξ

}
= J0

{
C−1

Ξ 1
}T

s|Ξ = cT s|Ξ



Quadrature error decays rapidly if N = W τ
2 (M).

Let k have N = W τ
2 (M). For every s ∈ S(Ξ)∣∣∣∣∣∣

∫
M

f (x)dx −
∑
ξ∈Ξ

cξf (ξ)

∣∣∣∣∣∣ ≤
∫
M
|f (x)− s(x)|dx

+
∑
ξ∈Ξ

|cξ||f (ξ)− s(ξ)|

Choose s = IΞf :∣∣∣∣∣∣
∫
M

f (x)dx −
∑
ξ∈Ξ

cξf (ξ)

∣∣∣∣∣∣ ≤ ‖f − IΞf‖L1(M) ≤ hτ‖f‖W τ
2 (M)

Using Sobolev kernel κm: Preconditioner solves
interpolation problem and∣∣∣∣∣∣
∫
M

f (x)dx −
∑
ξ∈Ξ

cξf (ξ)

∣∣∣∣∣∣ ≤ C

{
hσ‖f‖Cσ(M) 0 < σ ≤ 2m
hσ‖f‖Wσ

2 (M)
d
2 < σ ≤ m



Polyharmonic (and related) kernels

Q ∈ Πm(R) with limλ→−∞Q(λ) = +∞.
Fundamental solution to Lm =

∑m
j=0 aj∆

j = Q(∆)

f (x) =

∫
M

[Lm(f − pf )](α)k(x , α)dα + pf (x)

pf ∈ ΠJ = spanj∈J (ψj) with #J <∞
ψj eigenfunctions of ∆

k(x , y) =
∞∑

j=1

αjψj(x)ψj(y)
(
αj =

(
Q(λj)

)−1for j /∈ J
)

Lm is positive on the eigenfunctions not in ΠJ .
Conditionally positive definite w.r.t. ΠJ

Reproducing kernel semi-Hilbert space
Hk := {f =

∑∞
j=0 f̂jψj |

∑
j /∈J |̂fj |2Q(λj) <∞}



2-point homogeneous spaces

Restricted surface splines on Sd : k(x , α) = φ(x · α)

φ(t) =

{
(1− t)m−d/2 for d odd
(1− t)m−d/2 log(1− t) for d even

(Baxter & Hubbert, Levesley & Odell)
Surface splines on SO(3): k(x , α) = φ(ω(α−1x))

φ(t) =
(
sin(t/2)

)m−3/2

(H. & Schmid)
On two point homogeneous spaces,

Lm =
m∑

j=0

aj∆
j =

m∑
j=0

ãj(∇j)∗∇j

Special case: sometimes LmΠJ = {0},
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Lagrange functions for polyharmonic kernels on 2-point homogeneous spaces

When LmΠJ = {0}...
1 Lagrange basis is local [H-N-W, ’12]:

|χξ(x)| ≤ Cρ exp
[
−ν
(

dist(ξ, x)

h

)]
.

2 The Lagrange basis is stable [H-N-W,’12]:

c1qd/p‖a‖`p ≤ ‖
∑
ξ∈Ξ

aξχξ‖p ≤ c2qd/p‖a‖`p

3 The local Lagrange function bξ ∈ S(Υξ) using
Υξ ⊂ B(ξ,Kh| log h|) is local and stable:

‖bξ − χξ‖∞ ≤ CρhJ



Benefits:

Use as a preconditioner for interpolation, IΞf =
∑

ξ∈Ξ aξbξ:

[
CΞ Ψ

] [A
B

] [
a
]

=
[
f
]
.

A = (Aξ,η) and B = (Bξ,j) matrices of coefficients for each
bξ. (A is sparse.)

Basis collocation matrix (bξ(ζ))(ξ,ζ)∈Ξ×Ξ = (CΞA+ ΨB)
has nice decay.

Quasi-interpolation QΞf =
∑

ξ∈Ξ f (ξ)bξ performs like IΞ

‖QΞf − f‖∞ ≤ Chs‖f‖Cs , for s ≤ 2m



Quadrature on S2

Quadrature with k(x , α) = (1− x · α)m−1 log(1− x · α)∫
S2

f (x)dx ∼
∑
ξ∈Ξ

cξf (ξ)

correct for f ∈ S(Ξ)

Need to know J0 :=
∫
S2 k(x , y)dx – independent of y

Need to know moment vector J = (J1, . . . Jm) where
Jj =

∫
S2 ψj(x)dx

Weights are obtained from

KΞ

(
c
d

)
=

(
CΞ Ψ
ΨT 0

)(
c
d

)
=

(
J01
J

)



Quadrature with k(x , α) = (1− x · α)m−1 log(1− x · α)
For s ∈ S(k ,Ξ), s =

∑
aξk(·, ξ) +

∑
bjψj ,∫

S2
s(x)dx =

∑
ξ

aξ
∫
S2

k(x , ξ)dx +
∑

bj

∫
S2
ψj(x)dx

=

(
J01
J

)T (a
b

)
=

{
K−1

Ξ

(
J01
J

)}T (s|Ξ
0

)
= cT s|Ξ

KΞ

(
c
d

)
=

(
J01
J

)
not directly solvable – need to

decompose c into ranΨ and ker ΨT .
Each cξ can be obtained as

∫
S2 χξ(x)dx = Bξ,1vol(S2)

where
χξ =

∑
ζ

Aξ,ζk(·, ζ) +
∑

Bξ,jψj

Using the first coefficient from bξ may be faster.



Quadrature weights for 23042 icosahedral nodes



Quadrature weights for 22501 Fibonacci nodes



Quadrature weights for 22500 minimal energy nodes


