Kernel Interpolation and Quadrature with

Localized Bases

Thomas Hangelbroek university of Hawaii

joint work with:

Fran Narcowich and Joe Ward Texas A&M
Xingping Sun Missouri State

Grady Wright Boise State
Ed Fuselier High Point University



Localized kernel bases

@ Desired to treat large problems where standard basis is
inadequate — often used as a pre-conditioner

@ Local elements obtained by a difference operator applied
to kernel — considered by Dyn-Levin-Rippa, Rabut,
Buhmann-Dai, Beatson & Powell

@ We consider local Lagrange functions of Beatson and
Powell — showing rapid decay and L, stability & most of all
that this method scales: decay of basis elements is
stationary & construction is nearly stationary.

Kernel based quadrature
@ High performance quadrature rules for a variety of
manifolds — based on an idea for spheres by Sommariva
and Womersley
@ Weights can be easily calculated
@ In conjunction with localized bases — calculation of weights
is fast and scales appropriately



Positive definite kernels

@ For any set of centers =, the collocation matrix
Cz = (k(f’g))(f,()eixi

is symmetric, positive definite.

@ Interpolation: For any f € C(M) there is a unique
I=f € S§(=) so that Izf |z = f|=. In this case:
IEf = ZEGE Cgk(',f) with CEE = f|5

@ Native space: There is a Hilbert space of continuous
functions A with k as its reproducing kernel:

f(x) = (£, k(x, )w
@ The interpolant /=f to f is the best interpolant from N in the
sense that any s € A for which s|= = f|= has

H=fllv < ISl



Positive definite kernels

o (k(, 5))56_ forms a basis for the space

S(Z) = spank(-,¢)

fe=

@ So does the Lagrange basis (Xg)éez, where
Xe = 2pe= Aenk(m) andforall ¢ € =, x¢(¢) = 9(€, ).

@ The matrix of Lagrange coefficients (Ag¢) . ez, is the
inverse of the collocation matrix C=.

@ The Lagrange function coefficients satisfy A¢,, = (x¢, x¢)n

(Xer XA =D Acnlxe KCmn =D Acnd(€,m) = Agy-

ne= ne=



Sobolev spaces

Assume M is a d dimensional, compact Riemannian manifold
without boundary.
@ M is a metric space. Basic characteristics of = apply:
o fill distance h := maxxey dist(x, =),
@ separation radius g := mingc=dist(§, =\ {£}),
e mesh-ratio p = h/q.
@ M is also a measure space, with |B(x, r)| ~ r9 (for small r).

@ Sobolev spaces W] (M) can also be defined easily — either
via partition of unity and charts or by way of an elliptic
differential operator (like the Laplace—Beltrami operator).

e If 7 > d/2, then WJ (M) is a reproducing kernel Hilbert
space. Its kernel is positive definite and ' = W] (M).

@ [Fuselier-Wright, *11] If M c R%*" and ¢ € C(R%*") is an
RBF with native space WY (RY), then k : (x,y) — ¢(x — ¥)

has native space WJ (M), 7 =N — 2.



Kernels with ' = W (M)

If kK : M x M — R has native space WJ (M)
@ Lagrange function is bounded in native space norm

Ixellar < Cq?/2T

This is a bump estimate — compare x, to an interpolant
with support in B(¢, q).
@ Lagrange coefficients are uniformly bounded:
Accl = 1{xe, xc)wl < Cq7 7
— [I(C=) Moo < Cq¥2T(#3)

@ [De Marchi-Schaback, '10] If = is sufficiently dense in M,
then a zeros lemma ensures that the Lagrange function is
bounded, independent of #=:

|X£(X)| < qu/27Thde/2 — Cprd/Z



Sobolev kernels (or Sobolev-Matérn kernels)

@ Foropen Q Cc M, me Nand m > d/2 define the W;"(2)
inner product as

m
(f,9wpe) = Z/QW”, V/g)xdx
j=0
@ For Q = M, this is the same as the other definitions of
W' (M).

@ The Sobolev kernel k, is the reproducing kernel for
N = WJ'(M).

@ Equivalently, xm is the fundamental solution for the elliptic
differential operator Lm = Y7 (V/)*V/.



Lagrange function bounds

@ For sufficiently dense =, we have the energy bound for

R>0:
For R>0, |Ixelwpansem) < Cq7% e

R
—vy

@ Lagrange functions have pointwise bounds

dist(&,x)

Ixe(X)] < Cpm9/2e=v"h (H — Narcowich — Ward, '10)

e (H-N-W, '10) Boundedness of Lebesgue constant ,
T a. -
o (H-N-SUI’]-W, ’11) Stablhty: || deE agXAlp ~ qr Hang(E),
e (H-N-S-W,’11) L, boundedness of L, projector.
@ Lagrange coefficients are bounded by

[Acc| = ‘<X57XC>W2’"(M)| < qu_zme—ﬁdist(ﬁﬁc)
@ Centers more than Kh|log h| away from &:

‘A£,C| < qumeh% < Cph%erme



Let T¢ := =N B(¢, Kh|log hl). If N = #=, then #7T¢ ~ (log N)°.




Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, ’13]
@ Let T :==n B(& Kh|log hi).

@ Consider the truncated Lagrange basis (Xg)gez

Xe =D Accrim( )
CGTg
— 1% = Xelloo < C,h('E—2M)

(Because there are at most N < |[M|g—¢ centers)

@ Uses only a fraction of the total centers. but requires
calculating all coefficients.



Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, ’13]
@ Let T :==n B(& Kh|log hi).
@ Consider the truncated Lagrange basis (Xg)

fe=
Xe = Y Acchim(C)
CGTg
— Kv
— |IXe — Xelloo < C,h(Z 72™

(Because there are at most N < |[M|g—¢ centers)

@ Uses only a fraction of the total centers. but requires
calculating all coefficients.

@ Use instead b € S(T¢), the local Lagrange functions:
be(¢) = 0(¢,¢) forall ¢ € Te.

@ Complexity of constructing each b, is O(K3%| log N|39).
The full family (be)ee= costs O(K39N|log N[39).



Local Lagrange bounds: ||x¢ — b¢|ls < C,h’

@ Since r = (x¢ — b¢) € S(Tg)
(Xe — be) = > Cekiml-, where Cr,C=r|r,
£ETe
@ At the nodes, the error is small:
max |r(¢)| < C,h'z —2™
CETe
@ The inverse collocation matrix (Cr,)™" = (Ay¢)n.c)eTexTe
has /o, — 45, norm
1(Cre) Moo < CQF72M (#(¢)) < Cq 2"
@ Coefficients are small:
IGllso < Coq 2™ 2T < C,n'E 4
@ The uniform error is small:

— vK _am—
IXe — belloo < Y ICelllsm(: €)lloo < CohZ ~4M¢
{E’T‘g



Local Lagrange basis summary

@ Each element uses K|log N|? centers

@ For sufficiently large K, (be)ec= is an Ly-stable, rapidly
decaying basis for S(=):

2

@ Drawback: v is not known.
@ Can be used as a preconditioner for interpolation:

CzAG = f|=.

@ For sufficiently large K, Q=f = 3= f(£)be behaves like
Ef =73 ccz f(§)xe. Namely,

1Q=f — flloo < Adist(f, S(Z))e0 + Coh”’ ||l

@ Drawback: xm is hard to compute.



Quadrature on homogeneous spaces

From [Fuselier - H - Narcowich - Ward - Wright, to appear]
@ G is a Lie group of isometries of M acting transitively
Vx,y e M,dge€ G y = gx.

VQEG/ fgxdx—/f
@ G-invariant, positive definite kernel: k(gx, gy) = k(x,y)
—Vy e M, / k(x,y)dx = Jy
M

@ Forse S(2), s =Y ¢z ack(- )

/Ms(x)dx = Zag/ k(x, €)dx

= h(1Ma
= Jo17{CZ"sl=}

= Jdb {CEH}TSE =¢'slz



Quadrature error decays rapidly if A" = W3 (M).

@ Let k have N' = W] (M). For every s € S(=)

/M f(x)dx — Z cef(€)

ez

< /yf(x)—s(x)\dx

+ > lellf(€) — s(9)]

ge=
Choose s = I=f:

/M fx)ax — 3 Gef(€)

e=

<N = Eflle,on < A1 llwg o)

@ Using Sobolev kernel «m,: Preconditioner solves
interpolation problem and

/ f(x)dx — Z cef(€)
M ge=

hUHf”Co(M) O<o<2m
= C o d
o\ flwgeny 5 <o<m



Polyharmonic (and related) kernels

0 Q € Mm(R) with limy_,_ .. Q(A) =
@ Fundamental solution to L = > &A= Q(A)

f(x) = /M Lm(f — PN (0)K(x, 0)da + pr(x)

pr € Mg = spanje 7 () with #J < oo
@ 1; eigenfunctions of A

k(x,y) = Za/¢/ y) (o= (Q0y) Morj¢ )

@ L, is positive on the eigenfunctions not in M.
@ Conditionally positive definite w.r.t. 1

@ Reproducing kernel semi-Hilbert space
Hi={ =220 | Xjes HPQ(N) < oo}



2-point homogeneous spaces

@ Restricted surface splines on S9: k(x, o) = ¢(x - a)

o(t) = (1 — fym-a/2 for d odd
(1 =m9/2log(1 —t) for d even

(Baxter & Hubbert, Levesley & Odell)
@ Surface splines on SO(3): k(x,a) = ¢(w(a~'x))

o(t) = (sin(t/2))™ /2

(H. & Schmid)
@ On two point homogeneous spaces,

m m
Lm=Y_ an =>" gV)V
j=0 j=0

@ Special case: sometimes L7 = {0},
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Lagrange functions for polyharmonic kernels on 2-point homogeneous spaces

When LM 7 = {0}...
@ Lagrange basis is local [H-N-W, '12]:

Ixe(x)| < C, exp [—u (dlSt(th)ﬂ .

© The Lagrange basis is stable [H-N-W,12]:

d d
c1g?Pllalle, < 1) aexello < c2q?/P|alls,
ge=

© The local Lagrange function b: € S(T¢) using
Te C B(&, Kh|log hl) is local and stable:

1be — Xelloo < Cph?



@ Use as a preconditioner for interpolation, =f = .= acbx:

0= ] || 8 = 1.

A = (A¢,) and B = (B¢ ;) matrices of coefficients for each
b:. (Ais sparse.)

@ Basis collocation matrix (b¢(¢))e,c)e=x= = (C=A + VB)
has nice decay.

@ Quasi-interpolation Q=f = .= f(§)be performs like =

|Q=f — flloo < Ch®||f||cs, for s < 2m



Quadrature on S?

Quadrature with k(x,a) = (1 — x - o)™ 'log(1 — x - @)

f(x)dx ~ >~ cef(€)
§? ge=
correct for f € §(=)
@ Need to know Jy := [, k(x, y)dx —independent of y
@ Need to know moment vector J = (Jy, ... Jn) where
Jj = Jee ¥i(x)dx
@ Weights are obtained from

(o) = o) (o) = (V)



Quadrature with k(x,a) = (1 — x - a)™ log(1 — x - a)

Forse S(k,=), s =3 ack(-,&) + > by,

/st(x)dx = gaf/ggk(x’g)dx+zb//g2¢/(x)dx
-
{Kg‘ <J31>}T <s(|)3> _¢Tsl

® K= (g) = <J31> not directly solvable — need to

decompose ¢ into ranV¥ and ker W7,
@ Each ¢ can be obtained as [, x¢(X)dx = B 1vol(S?)

where
Xe = ZAs,ck(', ¢)+ Z B 1
¢

Using the first coefficient from b may be faster.



Quadrature weights for 23042 icosahedral nodes
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Quadrature weights for 22501 Fibonacci nodes
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Quadrature weights for 22500 minimal energy nodes
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