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Aim

Provide a faithful recovery of surfaces presenting discontinuities when a set of
gridded data is given.

Namely, we want to recover functions

f : Ω ⊂ R
2 → R

with vertical faults or oblique faults.

Vertical faults: the function f is discontinuous across a curve Γ ⊂ Ω;

oblique faults: the gradient of f, ∇f is discontinuous across a curve Γ ⊂ Ω.
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Motivations

Surfaces with discontinuities appear in many scientific applications including:
signal and image processing, geophysics....

Analysis of medical images as the magnetic resonance (MRI). Vertical faults
may indicate the presence of some pathology.

Vertical and oblique occur in many problems of geophysical interest when
describing the shape of geological entities as

the topography of seafloor surfaces,

mountainous districts.
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Discretely defined surfaces that exhibit such features cannot be correctly recovered
without the knowledge of

the position of the discontinuity curves Γ

the type of discontinuity.

a good recovery of the discontinuity curve Γ

Otherwise, typical problems that occur are

undue oscillations

poor approximation near gradient faults.
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Detection

Wide literature related to image analysis concerning vertical fault (edge)
detection when data are placed on a uniform grid and the large sample size N
is at least 216. Recent papers in this area include [Arandiga et al. 2008],
[Plonka 2009], [R. 2009] and the references therein.

For scattered locations and moderate size N < 216

Vertical fault detection: [Jung, Gottlieb, Kim 2011],
[Allasia, Besenghi, De Rossi 2000], [Allasia, Besenghi, Cavoretto 2009-1],
[Archibald Gelb, Yoon 2005], [Campton, Mason 2005],
[Iske 1997],[Lòpez de Silanes, Parra, Torrens 2008], [R. 1998].
Oblique fault detection: [Lòpez de Silanes, Parra, Torrens 2004], [R. 1997],
[Bozzini, R. 2013].
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Approximation of Γ

Correct approximation of Γ is essential to get a faithful recovery of the surface (see
e.g [Besenghi, Costanzo, De Rossi 2003], [Bozzini, R. 2000] and
[Gout, Guyader, Romani 2008]).

Only few papers giving suggestions for recovering the curve Γ, e.g.
[Campton, Mason 2005], [Lòpez de Silanes, Parra, Torrens 2004];

in [Allasia, Besenghi, Cavoretto 2009-1] and
[Allasia, Besenghi, Cavoretto 2009], different methods based on polygonal line,
least squares and best L∞ approximation are proposed in order to get an
accurate approximation of Γ.

In [Bozzini, R. 2013], we show that it is not sufficient to get an accurate
approximation, but it is necessary that the obtained approximation of Γ
provides the same partition of the sample given by the true discontinuity curve.
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Surface recovering

Few papers for the recovering, e.g

Vertical faults: [Arge, Floater 1994], [Allasia, Besenghi, Cavoretto 2009-1]
[Besenghi, Costanzo, De Rossi 2003], [Lòpez de Silanes et al. Mamern2011],
[Gout, Guyader, Romani 2008],

Oblique faults: [Bozzini, R. 2002], [Bozzini, Lenarduzzi, R. 2013]

Here we propose an interpolation strategy which provides a faithful recovery of
a faulted surfaces when gridded data are given;

The discontinuity curve Γ is supposed known. If this were not the case, we
would have first to apply a detection method and approximate Γ.
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The problem

Let f(x) be a function defined on the square domain Ω

f : Ω ⊂ R
2 → R

f or its gradient ∇f(x) are discontinuous across a curve Γ of Ω and smooth in
any neighborhood U of Ω which does not intersect Γ.

Γ is smooth, y = Γ(x).

F is a sample of gridded data of step-size h

F = {(xβ , f(xβ)), xβ ∈ hZ2 ∩ Ω}.
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Connections between either splines and Green’s functions or radial basis
functions and Green’s functions have repeatedly been used during the past
decades (see e. g. [Schumaker 1981], [Unser et al. 2005] [Fasshauer 2010]).

Important examples are

polyharmonic kernels

v2m−d(r) =

{

(−1)dm−d/2er2m−d 2m− d /∈ 2Z
(−1)1+m−d/2r2m−d log r 2m− d ∈ 2Z

2m− d > 0,

which are fundamental solutions of the elliptic operator (−∆)m;

Whittle–Matérn–Sobolev kernels

Sm,d,κ(x, y) =
21−m

(m− 1)!
κd−2m (κ‖x− y‖2)

m−d/2
Km−d/2(κ‖x− y‖2)

involving the Bessel function Kν of the third kind, which are fundamental
solutions of the elliptic operator (−∆+ κ2I)m (2m− d > 0).
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In [B., Rossini, Schaback 2013], we introduced a new kernel φ for for Wm
2 (Rd).

we generalized both classes of these kernels by considering fundamental
solutions of more general elliptic operators

L :=
m
∏

j=1

(−∆+ κ2
jI)

with positive real numbers κ2
j , 1 ≤ j ≤ m and 2m > d.

Let
κ = {κ2

j}
m
j=1 ∈ R

+ \ {0}

We have provided an explicit and convenient way to compute φ as a divided

difference of S1,d,κ with respect to the scale parameter vector κ.
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φ, m = 2

Figure: left: κ1 = 1, κ2 = 2, right: κ1 = 3, κ2 = 7,

φ, m = 3

Figure: κ1 = 2, κ2 = 3, κ3 = 4
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Properties

φ is radial strictly positive definite and decays exponentially at infinity

2m− d provide the class of regularity

if 2m− d ≥ 2, φ ∈ C2m−1−d(Rd)

φ generates any basis in Wm
2 (Rd)

in particular the lagrangian basis Λ on a set of knots X ∈ R
d. Let X = Z

d.

Let b = {φ(l)}l∈Zd , b ∈ l1(Zd). Since φ̂ is strictly positive, by the Wiener’s
lemma there are unique absolutely summable coefficients a = {al}l∈Zd such
that the cardinal function

Λ(x) =
∑

l∈Zd

alφ(x− l) satisfies Λ(l) = δ0l, l ∈ Z
d

and
a | a ∗ b = δ.

The vector a can be explicitly computed via an iterative algorithm (see e.g.
[Bacchelli et al. 2003]) and decays exponentially.

Λ decays exponentially at infinity.
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Figure: Left: a for m = 2 : κ1 = 1, κ2 = 2. Right: The Lagrangian Λ.
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The function φ is a scaling function [Rossini, Oslo 2012], i.e. considering the
dilation matrix A = 2I, φ generates a MRA(A,Zd) of L2(Rd).

We have that
Λ̂(ω) = â(ω)φ̂(ω).

Since a ∈ l1(Zd), â(ω) 6= 0 in T, according to [Madych 1992]

Λ is a scaling function
φ and Λ generate the same MRA

Figure: Λ with m = 2 : κ1 = 3, κ2 = 7 (left), κ1 = 10, κ2 = 20 (right)
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Λ satisfies the refinement equation

Λ(·) =
∑

l∈Zd

clΛ(2 · −l),

with

c = {Λ(
l

2
)}l∈Zd , c ∈ l1(Zd).

c decays exponentially.

The sequence of the partial sums in the refinement equation converges
uniformly to Λ.



Aim Tools Recovering faulted surfaces

Consequently, we get a convergent interpolatory subdivision scheme to a C2m−d−1

limit function.

Given a vector f ∈ l∞(Zd), the interpolatory subdivision scheme S is defined by

f0 := f fk+1 := Sfk, k ≥ 0

where

(Sfk)α =
∑

β∈Zd

cα−2βf
k
β .

Since c ∈ l1(Zd), the scheme converges to

If (x) =
∑

β∈Zd

fβΛ(x− β) ∈ C2m−d−1(Rd).

The interpolant has the minimum norm in the native space

The interpolant is the best approximation to f in the native space

Λ(x, κ) and the mask c have a numerically compact support

Λ(x, κ) depends on the values κj which act like tension parameters
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An example

κ1 = 1, κ2 = 2, e∞ = 1e− 2
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Figure: Left: f 17× 17. Right: Three level of refinement
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In conclusion, from Λ(x, κ) we can derive a subdivision scheme that allows us to
compute the surface interpolating a given data set with low computational cost.

In addition in [Bozzini, R. Canazei2012] we provided an interpolatory subdivision
algorithm for non uniform meshes that

ensures a good quality of the limit surface

gives a flexible design capable to reproduce flat regions without undesired
undulations
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Example, N = 113, z = (x− y)6+
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Figure: Locations of the starting vector.
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κ1 = 1, κ2 = 2, e∞ = 1.9e− 003
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This new kernel can be useful also in the interpolation of functions with

vertical faults

oblique faults

capable to generate creases without undesired undulations

capable to reproduce cusp sections

capable to reproduce more general behaviours
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We start from a initial vector of gridded data

F = {(xβ , f(xβ), xβ ∈ Ω ∩ hZ2},

with ”large” step size h and compute the final surface via subdivision on a finer grid
with step size hr = h/2r.
The basic tool is to decompose the domain Ω in the two (to fix the ideas)
subdomains Ω1 and Ω2 given by the discontinuity curve Γ.
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Figure: Ω ∩ hZ2, Ω1 ∩ hZ2, Ω2 ∩ hZ2
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F ⇒

{

F1 = {(xβ , f(xβ), xβ ∈ Ω1 ∩ hZ2},
F2 = {(xβ , f(xβ), xβ ∈ Ω2 ∩ hZ2}.

Difficulties

in general, the values f(Γ) do not belong to the data set F.

Γ is a boundary, the approximation may be poor near it;

Having a good approximation of f(Γ) is important for the final results and
crucial in the oblique faults case
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Vertical faults

In this case we can treat the two sets independently one of each other. Each set
Fl, l = 1, 2 is extended on the whole Ω by a suitable extrapolation procedure that
hopefully guarantees good values at the points of Γ and at the extended points near
the boundary.

F1 ⇒ F̃1 = {(xβ , f̃β,1), xβ ∈ Ω ∩ hZ2, f̃β,1 = f(xβ), β ∈ Ω1 ∩ hZ2},

F2 ⇒ F̃2 = {(xβ , f̃β,2), xβ ∈ Ω ∩ hZ2, f̃β,2 = f(xβ), β ∈ Ω2 ∩ hZ2}.

We refine each set r times
F̃1 → F̃ 1

1 · · · → F̃ r
1

F̃2 → F̃ 1
2 · · · → F̃ r

2

Finally, we reassemble the discrete surfaces by cutting out the auxiliary parts

F̃ r = {(xr
β , f̃

r
β,1), x

r
β ∈ Ω1 ∩

h

2r
Z
2} ∪ {(xr

β , f̃
r
β,2), x

r
β ∈ Ω2 ∩

h

2r
Z
2}
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Examples

Example 1: Ω = [0, 1]2 × [0, 1], N = 16× 16, h = 1/15, r = 3, κ = {10, 20}
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Figure: Γ and the given gridded point locations
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Figure: F and F̃ k

Maximum absolute error e∞ = 0.05
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This technique can be easily extended also to the case of more than one
vertical faults.

Example 2: Ω = [0, 1]2, N = 21× 21, h = 1/20, r = 3, κ = {10, 20}
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Figure: Γ and the given gridded point locations
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Maximum absolute error e∞ = 0.04
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This technique can be easily extended also to the case that Γ ends (begins) at
an interior point of Ω.

Example 3: Ω = [0, 1.2]2, N = 19× 19, h = 1/15, r = 3, κ = {3, 7}
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Figure: Γ and the given gridded point locations
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Maximum absolute error e∞ = 0.015
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Oblique faults

Few papers in the literature.

Difficulties

The values of f at the points of Γ are generally not known but are essential to
properly connect with continuity C0 the two patches.

we need to approximate the curve Γ, f(Γ)

Let
FΓ = {f(xβ ,Γ(xβ)), β = 1, . . . , n}.

A simple case:

Γ coincides with a horizontal y = yl (vertical) line of the grid

FΓ ⊂ F
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Step 0: Extension of F1 and F2 to Ω

F1 ⇒ F̃1,

F2 ⇒ F̃2.

Step 1:
Refine 1 time the sets

F̃1 → F̃ 1
1

F̃2 → F̃ 1
2

and
FΓ → F 1

Γ .

We replace the last row of F̃ 1
1 and the first row of F̃ 1

2 with F 1
Γ and repeat Step 1 r

times.

Having used interpolatory schemes, when we reassemble the discrete surfaces by
cutting out the auxiliary parts, the two patches are joined with continuity.
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Examples
Example 4: Ω = [−1, 1]2, N = 11× 11, r = 3 κ = {10, 20}, e∞ = 6.4e− 4
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Figure: Locations of the starting vector.
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The more general case

Also in this case we split the domain in the two sub domains Ω1 and Ω2 and the
data into the sets

F ⇒

{

F1 = {(xβ , f(xβ), xβ ∈ Ω1 ∩ hZ2},
F2 = {(xβ , f(xβ), xβ ∈ Ω2 ∩ hZ2}.

We need to approximate FΓ

we can choose a direction on the grid (e.g. the vertical one) and proceed line
by line on the grid

on each vertical line x = xl, find the closest grid point (xl, yj̄) to Γ(xl).
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Let θh = Γ(xl)− yj̄ , 0 ≤ θ < 1, then using a Taylor expansion arrested at the
first order, and approximating the partial derivative in the y direction with a
backward or forward formula (e.g using three or five points), we get

f(xl,Γ(xl)) = f(xl, yj̄) + θhf̃y(xl, yj̄) +O(h2), l = 1, . . . , N

we take as approximation of the values FΓ = {f(xl,Γ(xl))} the quantities

F̃Γ = {f̃(xl,Γ(xl)) = f(xl, yj̄) + θhf̃y(xl, yj̄), l = 1, . . . , n}.

By these values we get an approximation f̃(x,Γ(x)) of f(x,Γ(x)) by a least
square technique, a Shepard’s method...
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Recovering the surface

Each set Fl, l = 1, 2 is extended on the whole Ω by a suitable extrapolation
procedure that takes in to account the values F̃Γ.

F1 ⇒ F̃1, F2 ⇒ F̃2

We refine r times each set

F̃1 → F̃ 1
1 · · · → F̃ r

1

F̃2 → F̃ 1
2 · · · → F̃ r

2

Finally, we reassemble the discrete surfaces taking care to connect the two
parts with continuity but without destroying the angularities which are the
peculiar features that we want to recover.
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We introduce a weight function W such that

W ≥ 0

its gradient is discontinuous across Γ

its support is a small strip centered in Γ with half-width R

W goes to zero smoothly

e.g W (x, y) = 1− 3/2 |y − Γ(x)| /R+ 1/2 |y − Γ(x)|
3
/R3;

Then the final vector is

F̃ r = W (xr, yr)f̃(xr,Γ(xr)) + (1−W (xr, yr))

{

F̃ r
1 , (xr, yr) ∈ Ω1

F̃ r
2 , (xr, yr) ∈ Ω2
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Example 5:

Ω = [0, 1]2, N = 21× 21, r = 3 κ = {3, 7}, e∞ = 1.4e− 02
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Figure: Locations of the starting vector.
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THANK YOU FOR YOUR ATTENTION!
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