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The approximation problem

The data

• a finite set of distinct centers (points) Ξ ⊂ R
d

• function’s values at these centers {F(ξ)) : ξ ∈ Ξ}.

• a prescribed error bound ǫ

The problem: For a given radial function ϕ : R+ → R, to find a small

subset of Ξ, Y , such that the best ℓ2-approximation to F on Ξ from

span{ϕ(‖ · −y‖) : y ∈ Y }, S(Y, ϕ), satisfies

‖(F − S(Y,ϕ)‖ℓ2(Ξ) =





1

|Ξ|

∑

x∈Ξ

(F(x)− S(Y,ϕ)(x))2





1
2

≤ ǫ
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In this talk we show that the problem we stated is feasibile, and we

give a method for its solution. We do not have estimates relating the

number of centers needed for a certain accuracy with the properties

of the approximated function.

Such theoretical results are obtained in a paper by Devore and Ron

(2008), where a method for placement of centers is studied. The

method is based on the expansion of the approximated function by

wavelets, and on the approximation of the wavelets by translates of a

radial function
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The method of solution–Adaptive thinning

• Removal of least significant centers, one by one in a greedy way

([Dyn, Floater, Iske (2000)]).

• For a set of centers Y and an anticipated error functional e(y;Y, ϕ),

estimating the error incurred by the removal of y from Y , the center

with least anticipated error is the least significant.

• The novelty in our approach is the use of a predicting functional

instead of an anticipated error functional.

• The functional p(y;Y, ϕ) is a predicting functional for e(y; Y,ϕ) if it

determines with high probability the same least significant center

as e(y; Y,ϕ).

We call p(y;Y, ϕ) the significance of y in Y relative to p.
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Adaptive thinning algorithm

• Set Y = Ξ

• Compute S(Y, ϕ)

• While ‖(F − S(Y, ϕ))‖ℓ2(Ξ) ≤ ǫ

1. compute the significance of each y in Y .

2. find y∗–the least significant center in Y .

3. set Y = Y \ y∗.

4. compute S(Y, ϕ)

• Set Y = Y ∪ y∗, and return Y as the set of significant centers
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From the true error to an anticipated error

For Y ⊆ Ξ, let S(Y, ϕ) =
∑

y∈Y αyϕ(‖ · −y‖)

A heuristic argument

The error incurred by the removal of y ∈ Y from Y ,

E(y;Y, ϕ) = ‖F − S(Y \ y, ϕ)‖ℓ2(Ξ), satisfies

‖F − S(Y, ϕ)‖ℓ2(Ξ) ≤ E(y;Y,ϕ) ≤ ‖F − (S(Y, ϕ)− αyϕ(‖ · −y‖)) ‖ℓ2(Ξ)

For a center of small significance y we can assumne that the upper

and lower bounds above are close

Thus in case {αy : y ∈ Y } are known, an anticipated error functional is

e(y;Y, ϕ) = ‖F −
∑

z∈Y \y

αzϕ(‖ · −z‖)‖ℓ2(Ξ)
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From the anticipated error to a predicting functional

From e(y; Y,ϕ) we can derive a predicting functional, in view of the

following proposition

Proposition

‖F −
∑

z∈Y \y

αzϕ(‖ · −z‖)‖2ℓ2(Ξ) = ‖F − S(Y, ϕ)‖2ℓ2(Ξ) + ‖αyϕ(‖ · −y‖)‖2ℓ2(Ξ)

The functional p(y;Y, ϕ) = |αy|‖ϕ(‖ · −y‖)‖ℓ2(Ξ) is a predicting func-

tional, since

argmin
y∈Y

p(y;Y, ϕ) = argmin
y∈Y

e(y;Y, ϕ)

but p(y;Y,ϕ) is not an estimate of the error incurred by the removal

of y from Y .

7



Simplifying the predicting functional

Although the computation of p(y;Y, ϕ) = |αy|‖ϕ(‖ · −y‖)‖ℓ2(Ξ) has a

lower complexity than the computation of the true error E(y;Y,ϕ) =

‖F − S(Y \ y, ϕ)‖ℓ2(Ξ), this complexity is still high

Next we simplify p(y;Y,ϕ) for positive, strictly monotone radial func-

tions

For given {αy : y ∈ Y } we search for a simpler to compute functional

λ(y;Y, ϕ) for which the equality

argmin
y∈Y

p(y; Y,ϕ) = argmin
y∈Y

λ(y; Y,ϕ)

holds with high probability

Two observations allow us to obtain simpler predicting functionals.
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First obsevation–consistency of functionals

Let B(0, R) denote the ball with center at the origin and radius R,

let y, z ∈ B(0, R), and let ϕ be a positive radial function which is

strictly monotone on [0,2R]. Then the following three statements are

equivalent:

(i) ‖y − 0‖ > ‖z − 0‖

(ii) Let σ = +1(−1) for ϕ increasing (decreasing). Then for p ∈ [1,∞)

σ‖ϕ(‖ · −y‖)‖Lp(B(0,R)) > σ‖ϕ(‖ · −z‖)‖Lp(B(0,R)),

(iii) With σ as above and

µ(f) =

{

maxx∈B(0,R) f(x) for ϕ increasing

minx∈B(0,R) f(x) for ϕ decreasing

σµ(ϕ(‖ · −y‖)) > σµ(ϕ(‖ · −z‖))
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A heuristic conclusion

Let ϕ be a positive, strictly monotone radial function, and let the set

Ξ of centers be ”nicely distributed” in a ”nice” domain. We assume

that with high probability

‖ϕ(‖ · −y‖)‖ℓ2(Ξ) > ‖ϕ(‖ · −z‖)‖ℓ2(Ξ),

if and only if:

for ϕ increasing

max
x∈Ξ

ϕ(‖x− y‖) > max
x∈Ξ

ϕ(‖x− z‖)

and for ϕ decreasing

min
x∈Ξ

|ϕ(‖x− y‖) > min
x∈Ξ

ϕ(‖x− z‖)

Note that a similar equivalence also holds with the above three inequal-

ity signs replaced by three equality signs.
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The Heuristic conclusion leads us to replace the predicting functional

p(y;Y,ϕ) = |αy‖ϕ(‖ · −y‖)‖ℓ2(Ξ)

by the simpler functional

λ(y;Y, ϕ) = |αy|µ(ϕ(‖ · −y‖))

with µ(f) = µ̄(f) = maxx∈Ξ f(x) for ϕ increasing, and

with µ(f) = µ(f) = minx∈Ξ f(x) for ϕ decreasing.

Inconsistency happens when either

p(y;Y, ϕ) > p(z;Y,ϕ) and λ(y;Y,ϕ) < λ(z;Y, ϕ)

or when

p(y;Y, ϕ) < p(z;Y,ϕ) and λ(y;Y,ϕ) > λ(z;Y, ϕ)

In the first case, the ratio
αy

αz
is confined to the interval

I(y, z) = (a(y, z), b(y, z)) =





‖ϕ(‖ · −z‖)‖ℓ2(Ξ)

‖ϕ(‖ · −y‖)‖ℓ2(Ξ)

,
µ(ϕ(‖ · −z‖)

µ(ϕ(‖ · −y‖)




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In the second case a(y, z) > b(y, z) and the ratio
αy

αz
is confined

to the interval (b(y, z), a(y, z)), which we also denote by I(y, z)

We call the interval I(y, z) inconsistency interval

It is sufficient to consider all pairs of distinct points of Y in the set

Y 2
> = {(y, z) ∈ Y × Y : ‖ϕ(‖ · −y‖)‖ℓ2(Ξ) > ‖ϕ(‖ · −z‖)‖ℓ2(Ξ)}

Note that I(y, z) ⊂ (0,1) for (y, z) ∈ Y 2
>, if there is functional

consistency between µ and ‖ · ‖ℓ2(Ξ)

Our second observation estimates the probability of the ratio
αy

αz
to

be in an inconsistency interval, under reasonable assumptions. We

checked numerically that this probability is small for the two radial

functions we work with

ϕ(r) = r3 and ϕ(r) = exp(−0.1r)
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Second observation- inconsistency due to {αx : x ∈ Ξ}

Reasonable Assumptions (for a large set Ξ, under the lack of informa-

tion about the distribution of the ratios {|
αy

αz
| : (y, z) ∈ Ξ2

>} in (0,1))

(i) The inconsistency intervals are contained in (0,1)

and therefore if |αy| ≥ |αz| there is no inconsistency

(ii) For |αy| < |αz| the ratio |
αy

αz
| is uniformly distributed in the

interval (0,1)

(iii) For any set of coefficients {αx : x ∈ Ξ}, and for any (y, z) ∈ Ξ2
>,

the probability that |
αy

αz
| < 1 equals the probability that |

αy

αz
| > 1

It follows from the above assumptions that the probability of a ratio

|
αy

αz
| for (y, z) ∈ Ξ2

> to be contained in an inconsistency interval equals

half times the length of I(y, z)
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The length of an inconsistency interval is

L(y, z) = |b(y, z)− a(y, z)| =

∣

∣

∣

∣

∣

∣

‖ϕ(‖ · −z‖)‖ℓ2(Ξ)

‖ϕ(‖ · −y‖)‖ℓ2(Ξ)

−
µ(ϕ(‖ · −z‖)

µ(ϕ(‖ · −y‖)

∣

∣

∣

∣

∣

∣

The probability of inconsistency due to the coefficients {αx : x ∈ Ξ}

is half times the average length of the inconsistency intervals corre-

sponding to pairs of points in

Ξ2
> = {(y, z) ∈ Ξ×Ξ : ‖ϕ(‖ · −y‖)‖ℓ2(Ξ) > ‖ϕ(‖ · −z‖)‖ℓ2(Ξ)}

Pinc(p, λ; Ξ) =
1

2|Ξ2
>|

∑

(y,z)∈Ξ2
>

L(y, z)

Our aim is to obtain a computable apreiori estimate of the probabilty

of inconsistency caused by the coefficients {αx : x ∈ Ξ}

14



For a large set of points Ξ, which are ”nicely” distributed in a domain

D, we estimate the average length of the inconsistensy intervals by

replacing the sum appearing in Pinc(p, λ; Ξ) by an integral

Pinc(p, λ;D) =
1

2|DD>|

∫

DD>

L(y, z)dydz

with

DD> = {(y, z) ∈ D ×D : ‖ϕ(‖ · −y‖)‖L2(D) > ‖ϕ(‖ · −z‖)‖L2(D)}

The quality of Pinc(p, λ;D) as an estimate of the probability of incon-

sistency for subsets Y of Ξ deteriorates as the size of Y decreases

15



Numerical observations

D = [−1,1], ϕ(r) = r3, Pinc(p, µ̄;D) ≈ 0.009

D = [−1,1], ϕ(r) = exp(−0.1r), Pinc(p, µ;D) ≈ 0.004

For ϕ(r) = exp(−0.1r)

max
y∈B(0,R)

µϕ(‖ · −y‖)− min
y∈B(0,R)

µϕ(‖ · −y‖ = ϕ(R)− ϕ(2R)

max
R>0

(ϕ(R)− ϕ(2R)) = 0.25 attained at R = 6.9

ϕ(1)− ϕ(2) = 0.086 and ϕ(100)− ϕ(200) = 0.000045

implying that µ(‖ · −y‖) is almost a constant for y ∈ D, where D is a

”nice” large domain

The last numerical observations suggest that the functional µ can be

replaced by the functional 1(f) = 1 in the predicting functional λ.

Thus |αy| is a predicting functional for this ϕ
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The ”best” predicting functional

Our numerical tests indicate that the predicting functional

p∗(y;Y, ϕ) = |αyϕ( min
z∈Y \y

‖z − y‖)|

works very well for any radial function

Our efforts to explain this ”magic” lead us to the predicting

functionals we discussed before
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Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi R1 functions R2 functions

ATR2 and ATRM(µ̄) ϕ(r) = r3, ε = 0.1

2500 samples of a cylinder function



Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi R1 functions R2 functions

ATR2 and ATRM(µ̄) ϕ(r) = r3, ε = 0.1

ATR2: 287 centers, 2500 data significant centers.

Note that most of
the significant
centers are near
discontinuity
points.



Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi R1 functions R2 functions

ATR2 and ATRM(µ̄) ϕ(r) = r3, ε = 0.1

ATRM(µ̄): 381 centers, 2500 data significant centers.



Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi R1 functions R2 functions

ATR2 and ATRM(1) ϕ(r) = e−0.1r , ε = 0.1

ATR2: 362 centers, 2500 data significant centers.



Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi R1 functions R2 functions

ATR2 and ATRM(1) ϕ(r) = e−0.1r , ε = 0.1

ATRM(1): 377 centers, 2500 data significant centers.



Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi R1 functions R2 functions

ATR2 and ATRM(1) ϕ(r) = e−0.1r , ε = 0.01

900 samples of a test function from Dyn,Levin,Rippa (1990)



Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi R1 functions R2 functions

ATR2 and ATRM(1) ϕ(r) = e−0.1r , ε = 0.01

ATR2: 29 centers, 900 data significant centers.

Note that many
significant centers
are located along
the line of large
gradient.



Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi R1 functions R2 functions

ATR2 and ATRM(1) ϕ(r) = e−0.1r , ε = 0.01

ATRM(1): 17 centers, 900 data significant centers.



Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi R1 functions R2 functions

ATR2 and ATRM(1) ϕ(r) = e−0.1r , ε = 0.01

900 samples of Ritchie’s (1978) function



Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi R1 functions R2 functions

ATR2 and ATRM(1) ϕ(r) = e−0.1r , ε = 0.01

ATR2: 195 centers, 900 data significant centers.

Note that most of
the significant
centers are
located near points
of discontinuity or
points of large
gradient.



Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi R1 functions R2 functions

ATR2 and ATRM(1) ϕ(r) = e−0.1r , ε = 0.01

ATRM(1): 197 centers, 900 data significant centers.



Intro Heuristic FuncCons IncInt NewAntErr NumEx Epi Summary Questions

Summary

Our experiments indicate that for a fixed level of error:
ATR0 selects the smallest number of significant centers but
it has the highest computational cost.
ATR2 is close to ATR0. ATR2 outperforms ATRM(µ̄) for ϕ ↑.
ATRM(1) is close to ATR0 and it is close or outperforms
ATR2 for ϕ ↓ and has the lowest computational cost.
The ATRM algorithms are based on our good heuristic and
on the Functional Consistency Theorem.
We have no explanation for the success of ATR2.


