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Standard schemes
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real-valued
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Non-standard schemes

@ non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
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Non-standard schemes
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Non-standard schemes

@ non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
@ non-uniform: Floater, Cashman, Hormann, Levin, Levin

@ arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin
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lil<n

Ulrich Reif 27.09.2013 3/29



Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
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non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu
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Non-standard schemes
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Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann
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Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

manifold-valued: Dyn, Grohs, Wallner, Weinmann
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Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann
manifold-valued: Dyn, Grohs, Wallner, Weinmann

geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

Pﬁf-;&g = ga(pf, .. .,pf+n)7 o € {0, 1}d’ ie Zd, ple c RY.
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Sabin's Circle-preserving subdivision

Ulrich Reif 27.09.2013 4 /29
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Sabin's Circle-preserving subdivision
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GLUE-schemes

Definition
Let P = (pi)icz, pi € E := RY. A geometric, local, uniform, equilinear
subdivision scheme G : P! — P‘*1 is characterized by:
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GLUE-schemes

Definition
Let P = (pi)icz, pi € E := RY. A geometric, local, uniform, equilinear
subdivision scheme G : P! — P‘*1 is characterized by:

G: The scheme G commutates with similarities,

GoS=50G, SeS(E).
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GLUE-schemes

Definition
Let P = (pi)icz, pi € E := RY. A geometric, local, uniform, equilinear
subdivision scheme G : P — P! is characterized by:

G: The scheme G commutates with similarities,
GoS=50G, SeS(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

(41 V4 V4
p2i++g :ga(pia‘*'vpi—l-m)’ S {0’1}'

The functions g, are C11 in a neighborhood of linear data.
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GLUE-schemes

Definition
Let P = (pi)icz, pi € E := RY. A geometric, local, uniform, equilinear
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G: The scheme G commutates with similarities,
GoS=50G, SeS(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

(41 V4 V4
p2i++g :ga(pia‘*'vpi—l-m)’ o€ {0’1}'

The functions g, are C11 in a neighborhood of linear data.
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G(E) =E/2 —_—e—————

Ulrich Reif 27.09.2013

12 /29



GLUE-schemes

Definition
Let P = (pi)icz, pi € E := RY. A geometric, local, uniform, equilinear
subdivision scheme G : P — P! is characterized by:

G: The scheme G commutates with similarities,
GoS=50G, SeS(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

(41 V4 V4
p2i++g :ga(pia‘*'vpi—l-m)’ o€ {0’1}'

The functions g, are C11 in a neighborhood of linear data.

E: The standard linear chain E = (je);cz is dilated by the factor 1/2,

G(E) =E/2 — e —0o 0o 0o 0o 0o o —

Ulrich Reif 27.09.2013

12 /29



GLUE-schemes

Definition
Let P = (pi)icz, pi € E := RY. A geometric, local, uniform, equilinear
subdivision scheme G : P — P! is characterized by:

G: The scheme G commutates with similarities,
GoS=50G, SeS(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

(41 V4 V4
p2i++g :ga(pia‘*'vpi—l-m)’ o€ {0’1}'

The functions g, are C11 in a neighborhood of linear data.

E: The standard linear chain E = (je);cz is dilated by the factor 1/2,

G(E) =E/2 + Te. — e 0o 0o 0o oo
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Basics: matrix-like formalism

@ Analogous to the representation of linear schemes in terms of pairs of

matrices, there exist functions g, such that

V4 A
Pors = 8s(P})

where pff = [pf; e pf+n71] are subchains of P! of length n.

@ Constant chains are fixed points,

g (p)=p if Ap=0.
@ Composition of functions g, is denoted by

8y =8,,0 08y, XL =]Jo1,...,04, |E]=1.
o Lete:=[e;...;ne]. Then

gs(e) =21 e+ rxe.
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Basics: spaces of chains

o EZ := R9*Z is the space of infinite chains in RY.

e E" := R9*" is the space of chains with n vertices in RY.
o L":={p € E": A%p = 0} is the space of linear chains.
o [1:E" — LL" is the orthogonal projector onto LL".

e For P € EZ, let

IP|| :==sup|lpill2, [Pl1:=[AP|, [|P|2:=|A%P].
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Basics: spaces of chains

o EZ := R9*Z is the space of infinite chains in RY.

e E" := R9*" is the space of chains with n vertices in RY.
o L":={p € E": A%p = 0} is the space of linear chains.
o [1:E" — LL" is the orthogonal projector onto LL".

o For pe E", let

Ipll :==suplpill2, Ipli:= [Apl, Ipl2 == [A%p].
1
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Basics: relative distortion

@ The relative distortion of some chain p € E” is defined by

Ip|2 :
if [Mp[1 # 0
#(p) := q NPl
oo if |ﬂp|1 =0.

@ Invariance under similarities,

k(p) = k(S(p)), S € S(E).

@ Distortion of infinite chain,

k(P) :=supk(pi), Pi=I[pii---;Pitn-1]
icz

@ Distortion sequence generated by subdivision,

ke = K(PY), P’:=G'(P).
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Straightening

Definition
The chain P is
@ straightened by G if x; is a null sequence;
o strongly straightened by G if k4 is summable;

o straightened by G at rate « if 2/®x, is bounded.
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Straightening

Definition
The chain P is
o straightened by G if s, is a null sequence;
o strongly straightened by G if x, is summable;
e straightened by G at rate « if 2/“x, is bounded.

Lemma
Let G be a GLUE-scheme. If the chain P is
o straightened by G, then |P|; < Cq* for any q > 1/2;

o strongly straightened by G, then |P|; < Cq® for any q = 1/2;

o straightened by G at rate a, then |P|y < C2¢(1+a),
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Straightening

Definition
The chain P is
o straightened by G if x; is a null sequence;
@ strongly straightened by G if k4 is summable;
o straightened by G at rate « if 2/®x, is bounded.

Lemma

Let G be a GLUE-scheme. If the chain P is
o straightened by G, then |P|; < Cq for any q > 1/2;
o strongly straightened by G, then |P|; < Cq® for any q = 1/2;
o straightened by G at rate a, then |P|y < C2/(1+a),

Proof:
@ induction on |X|

@ g-Pochhammer symbol
Ulrich Reif
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Straightening

Definition
The chain P is
o straightened by G if s, is a null sequence;
o strongly straightened by G if x4 is summable;
o straightened by G at rate « if 2/“x, is bounded.

Theorem (R. 2013)

Let G be a GLUE-scheme. If the chain P is
e straightened by G, then P’ converges to a continuous limit curve;
e strongly straightened by G, then the limit curve is C* and regular;
o straightened by G at rate «, then the limit curve is C1* and regular.

\

K =
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Convergence

o Let ¢ be a Ck-function which

» has compact support;
» constitues a partition of unity, Zj o(-—j)=1

o Associate a curve ®f to the chain P at stage ¢ by

SPT = P2 —))
LeZ
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Convergence

o Let ¢ be a Ck-function which

» has compact support;
» constitues a partition of unity, Zj o(-—j)=1

o Associate a curve ®f to the chain P at stage ¢ by

SPT = P2 —))
LeZ

o If CDZ[PK] is Cauchy in C9, then the limit curve
®[P] := lim ®[PY]
{—00

is well defined, continuous, and independent of .
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Convergence

o Let ¢ be a Ck-function which

» has compact support;
» constitues a partition of unity, Zj o(-—j)=1

@ Associate a curve ®¢ to the chain P at stage ¢ by

SPT = P2 —))
LeZ

o If ®¢[P?] is Cauchy in CO, then the limit curve
®[P] := lim ®‘[P]
{—00
is well defined, continuous, and independent of .

o If ®‘[P*] is Cauchy in Ck, then the limit curve ®[P] is C.

@ Use modulus of continuity to establish Holder exponent.
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Proximity

@ Given a GLUE-schem G, choose a linear subdivision scheme A with
equal shift, i.e., G(E) = AE = (E+ 7e)/2.
@ Schemes G and A differ by remainder R,

R(P) := G(P) — AP.
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Proximity

@ Given a GLUE-schem G, choose a linear subdivision scheme A with
equal shift, i.e., G(E) = AE = (E+ 7e)/2.
@ Schemes G and A differ by remainder R,
R(P) := G(P) — AP.

@ Choose ¢ as limit function of A correspondig to Dirac data ¢;¢ to
define curves ®¢[P?] at level /.
o Curves at levels ¢ and ¢ + r differ by

|0/ (T [P] — o' [P)| < CZ2U|R (P))]
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Proximity

@ Given a GLUE-schem G, choose a linear subdivision scheme A with
equal shift, i.e., G(E) = AE = (E+ 7e)/2.
Schemes G and A differ by remainder R,

R(P) := G(P) — AP.

Choose ¢ as limit function of A correspondig to Dirac data d; ¢ to
define curves ®¢[P?] at level /.
o Curves at levels ¢ and ¢ + r differ by

|0/ (T [P] — o' [P)| < CZ2U|R (P))]

@ Use bound

R(P)lo < ckig’

L ¢
with g = 1/2 in case of strong straightening, and g = 2/3 otherwise.“=
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Checks for straightening

For applications, we need explicit values «, § such that P is straightened
by G at rate a whenever x(P) < ¢.
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Checks for straightening

Lemma
Let

d
o] :=  sup te(e +d)
o<lda<s  ld|2

If T¢[0] < 1 for some ¢ € N, then P is straightened by G at rate

_ log, Ie[4]
¢

whenever k(P) < 4.
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Checks for straightening

Lemma
Let

d
[([0] ;== sup ree +d)
o<ldl<s  ld]2

IfT¢[0] < 1 for some ¢ € N, then P is straightened by G at rate

_ logy I[d]
l

whenever k(P) < 6.

+ A rigorous upper bound on [;[] can be established using mean value
theorem and interval arithmetics.

— The larger 9, the poorer a.
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Checks for straightening

Theorem (R. 2012)
Let

d d
[¢[0] := sup 75Z(e+ ) and Ty[0,7] = ax 7k(e+ )
o<ldh<s ld[2 5<\d|2<7 d|2

IfT4[6] < 1 for some ¢ € N, and T'[6,~] < 1 for some k € N, then P is
straightened by G at rate

_ log, Ie[9]
l

whenever k(P) < 7.
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Checks for straightening

Theorem (R. 2012)
Let

d d
o<ldh<s ld[2 5<\dlz<w |d\2

IfT4[6] < 1 for some ¢ € N, and T'[6,~] < 1 for some k € N, then P is
straightened by G at rate

_ log, Ie[9]
l

whenever k(P) < 7.

+ Rigorous upper bounds on I'y[d] and [d, 7] via interval arithmetics.
+ Choose § as small as possible to get good «.

+ Choose 7 as large as possible to get good range of applicability.
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Differentiation

@ In general, the derivative of a function g : E” — [E” is represented by
n X n matrices of dimension d x d, each.
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Differentiation

@ In general, the derivative of a function g : E” — [E” is represented by
n X n matrices of dimension d x d, each.

@ By property G, the derivative of g, at e has the special form
Dg,(e)-q=AqN" +B,qM’, o< {0,1},
where A, B, are (n x n)-matrices, and
N* := diag[1,0,...,0], N":=diag[0,1,...,1]

are (d x d)-matrices representing orthogonal projection onto the
x-axis and its orthogonal complement.

o Let A = (Ao, A1) and B = (By, B;) denote the linear subdivision
schemes corresponding to normal and tangential direction.
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Inheritance of Cl“regularity

Theorem (R. 2013)

Let the linear schemes A and B be C1* and CYB, resp. If P is
straightened by G, then the limit curve ®[P] is CHmin(e:f),

Proof: Show that

lim liminf (T [61)Y* < isr(A2. A2). isr(B2. B?)).
5I_r110 Izrig; ( ol ]) _max(Jsr( 0: A1), Jsr(By, 1))
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Locally linear schemes

Definition

A GLUE-scheme G is called locally linear if there exist (n x n)-matrices
Ao, A1 such that

Dga(e) q=A,qN"+ B, q ne.
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Locally linear schemes

Definition

A GLUE-scheme G is called locally linear if there exist (n x n)-matrices
Ao, A1 such that

Dga(e) -q=Asq.

In this case the linear scheme A = (A, A1) is called the linear
companion of G.
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Locally linear schemes

Definition
A GLUE-scheme G is called locally linear if there exist (n x n)-matrices
Ao, A1 such that

Dga(e) -q=Asq.

In this case the linear scheme A = (A, A1) is called the linear
companion of G.

@ For d =1, any GLUE-scheme G is locally linear.
@ For d > 2, the scheme G is locally linear if A = B.

@ Circle-preserving subvdivion is locally linear, and the standard
four-point scheme is its linear companion.

&
&
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Inheritance of C%“-regularity

Theorem (R. 2013)

Let G be locally linear, and let the linear companion A be C>*. If P is
straightened by G, then the limit curve ®[P] is C>°.

Proof:

o Use basic limit function ¢ of A to define curves ®‘[P*].
@ Use bound

IR(P)|o < cx(P)[Pl2

on the remainder R(P) := G(P) — AP.
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Inheritance of C3“regularity

...cannot be expected!
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A counter-example

Consider

6 20 6 182
go(pi -+ Piys) = 32 e+32 'Z+1+32 Pivat N ‘II

. IS VRN 1
gl(pi?"'7pl+3) 32 + - 32 ,+]_+ 32 p,+2+ 32 pl+3

The scheme is locally linear with Ag, A; representing quintic B-spline
subdivision. However, limit curves ®>[P] are not C*#, and not even C3.
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Conclusion

@ Geometric subdivision schemes deserve attention.
@ Results apply to a wide range of algorithms.

@ Holder continuity of first order can be established rigorously by means
of a universal computer program (at least in principle, runtime may
be a problem).

@ For locally linear schemes, Holder-regularity of second order can be
derived from a linear scheme, defined by the Jacobians at linear data.

@ Regularity of higher order requires new concepts.
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