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Let 0 € A be a k-dimensional simplex in A, k < n. If for any
s € Si(A), it follows that s € C#(o), where ;1 > r, then we say
that S}(A) has supersmoothness (1 at o.
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what is supersmoothness: Clough-Tocher example

seSiA) =  seC(w)
dim S}(A) = dim P, = 6

s€S3A) — s C5(w)

dim S3(A) = dim Ps = 21

BUT there is a big difference between these two examples

C?(v) is true C? differentiability at vp, while C°(v), for d > 5, is
equality of all partial derivatives of order five at vp.

Why?

Because if s were order five differentiable at vy then it would have
been order four differentiable in a neighborhood of v.



what is supersmoothness: example

sy = { O T x>0
Y= y2 if x <0,

Such s(x, y) is not even continuous on R2. However,
s € €°((0,0)) and, moreover,

ds ds
500 =5 (0.0 =0.

Thus, s has supersmoothness one at the origin but not
differentiability of order one at the origin.

Continuity of this C~(R?) spline at the origin is of course the true
continuity.



what is supersmoothness

A C’-differentiable piecewise polynomial function on a
n-dimensional simplicial complex A C R” is called a spline. Let
S5 (A) denote the vector space of C" splines on a fixed A.

Let o € A be a k-dimensional simplex in A, k < n. If for any
s € SJ(A), it follows that s € C#(o), where ;1 > r, then we say
that SJ(A) has supersmoothness p at o.

e ;1 does NOT depend on d, it depends on A and r
e univariate splines have no supersmoothness

e supersmoothness is not always “superdifferentiability”
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1984. S} on the split of a simplex into four subsimplices using one
interior point has supersmoothness three at the split point.

P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data,
Computer Aided Geometric Design 1, 1984 169-181

2010. Supersmoothness officially enters multivariate splines.
T. Sorokina, Intrinsic supersmoothness of multivariate splines,
Numerische Mathematik, 116, 2010, 421-434

2013. Do all multivariate splines have some supersmoothness?
T. Sorokina, Supersmoothness of bivariate splines and geometry of
the underlying partition, submitted, 2013, see my webpage.

2013. Do other functions have supersmoothness?
B. Shekhtman and T. Sorokina, Intrinsic Supersmoothness,
submitted, 2013, arXiv:1302.5102.



computing dimensions: dim S}(A,) =7

Figure : dim S}(A;) =6  Figure : dim S}(A3) =6  Figure : dim S}(Ag) =6



bivariate splines: more toy examples

Figure : dim S| =3 Figure : dim S]' =3 Figure : dim S =3



can we do better than algebraic geometers?

Available online at www.sciencedirect.com

B JOURNAL OF
sciance @B...cv Approximation
i I Theory
ELSEVIER Jousnal of Approximation Theory 132 (2005) 72-76

wwwelsevier.com/locate/jat

Smooth planar r-splines of degree 2r

Stefan O. Tohdneanu
Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
Received 24 February 2004; received in revised form 4 October 2004; accepted in revised form 27 October 2004

Communicated by Amos Ron

Abstract

Alfeld and Schumaker [Numer. Math. 57 (1990) 651-661] give a for mula for the dimension of the
space of piccewise polynomial functions (splines) of degree d and smoothness r on a gencric triangula-
tion of a planar simplicial complex 4 (ford >3 +1) and any triangulation (ford > 3r +2). In Schenck
and Stiller [Manuscripta Math. 107 (2002) 43-58], it was conj d that the Alfeld ker for-
mula actually holds for all @ >2r + 1. In this note, we show that this is the best result possible; in
particular, there exists a simplicial complex 4 such that for any r, the dimension of the spline space in
degree d=2r is not given by the formula of Alfeld and Schumaker [Numer. Math. 57 (1990) 651-661].
The proof relies on the explicit ion of the ishing of the first local col logy module
described in Schenck and Stillman [J. Pure Appl. Algebra 117 & 118 (1997) 535-548].

Published by Elsevier Inc.

MSC: primary 13D40; secondary 52820

Fenwords: Simplicial complex: Bivariate spline; Hilbert function



0.2)

()

“4.2)

(€))

@G.1)

0,0)

2.0

“.0

Si(A) for r < 2d
dim Si(A) =?



©.2) (k) “2)

Si(A) for r < 2d

DA\ 6D dim S5(A) =?
0.0) (2,0) (4.0

Then supersmoothness implies ....



©2) @2 2)

s € S/ (left blue pentagon)
) /6 implies s has supersmoothness

@0 G @0 wi=r+ % at (1,1) across
the red edge ONLY




©.2) (2.2) (4.2)

LD (€R))
0.0) (2.0) 4.0)

Then supersmoothness implies ....

s € S/ (left blue pentagon)
implies s has supersmoothness
wi=r+ L%J at (1,1) across
the red edge ONLY



0.2)

s € S} (right blue pentagon)
implies s has supersmoothness
wi=r+ L%J at (3,1) across
the red edge ONLY



0.2)

s € S} (right blue pentagon)
G - implies s has supersmoothness
— wo=r+ %J at (3,1) across
ADN Y 6D the red edge ONLY
(0.0) 2,0 4.0

Then the overlap implies ....
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s € S} (blue rhombus) implies

©2 Q. (4.2) s has supersmoothness
== wi=r+ L%J across the red
LS 0D edge. Thus Sj(A) = SJH(A)
0,0 2,0 4.0

Then we play this game of again and

1 becomes r + {’;—w We play this game again and again and ....
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the true partition emerges.....
there has never been a red edge

0.0) .0 4.0
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the true partition emerges.....
there has never been a red edge

0.0 ,0) 4.0)

Then we apply the usual Bernstein-Bézier techniques and ....
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e red smoothness conditions in
the corners can be considered
independently of those in the
white area

e since d < 2r, the smoothness
conditions inside the white area
are so tight that it is just one
polynomial.



e red smoothness conditions in
the corners can be considered
independently of those in the
white area

e since d < 2r, the smoothness
conditions inside the white area
are so tight that it is just one
polynomial.

Then we simply count the domain points (too boring to present it
here) and get the exact dimension.



sometimes one has to use algebraic geometry

Theorem
For all integers d > 0 and n > 1,

s~ () o)

where A, is the Alfeld split of a simplex in R" with one interior
split point into n 4+ 1 subsimplices.

A. Kolesnikov and T. Sorokina, Multivariate C*-continuous splines
on the Alfeld split of a simplex, submitted, 2013, see my webpage.
The proof would have been impossible without

Theorem
Let s € Si(An). Thens € C"(v).



what about non-polynomial splines

B. Shekhtman, T. Sorokina, Intrinsic supersmoothness, 2013,
submitted, arXiv:1302.5102

Using only standard tools from multivariate calculus, we show that
if we continuously glue two smooth functions along a curve with a
“corner”, the resulting continuous function must be differentiable
at the corner, as if to compensate for the singularity of the curve.
Moreover, locally, this property characterizes non-smooth curves.
We also generalize this phenomenon to higher order derivatives. In
particular, this shows that supersmoothness has little to do with
properties of polynomials.

T. Sorokina, Supersmoothness of bivariate splines and geometry of
the underlying partition, 2013, submitted

Using only standard Bernstein-Bézier tools, we show that many
types of supersmoothness have everything to do with polynomial
nature of splines.



supersmoothness at singular point

Theorem (2012)

Let v C R? be the trace of a Jordan arc that divides the open disk
Q into two subsets Q1 and Q. Let v is not smooth at P € . Let
fi, f» be C* functions on Q continuously glued along =y, that is, let

o f(x’) if (X,)EQ7
F(x,y) -—{ f;(x,i//) if (X,i)GQ;

be a continuous function on Q0. Then the piecewise function F is
differentiable at P, that is, Vf(P) = V(P).

Lo



local characterization of non-smooth curves

Theorem (2012)

The trace of a Jordan arc ~y is smooth at P if and only if there
exists a neighborhood U of P and a function h continuously
differentiable on U such that

h(x,y) =0 if (x,y)e~yNU, and Vh(P)#D0.



supersmoothness of higher derivatives

Theorem (2012)

Let functions fi, ..., fa1o, be n times continuously differentiable on
Q and let F be defined piecewise on each sector A; by F |a;:= fj,
Jj=1,....,n+2. If F € C"(Q) then F has all derivatives of order
n+ 1 at the origin, that is, F € C"(0), n > 0.




the book on splines

M. J. Lai, L. L. Schumaker, Spline Functions on Triangulations,
Cambridge University Press (Cambridge), 2007.



bivariate splines: dim on a cell

Let a cell A have n edges, {ei}"_;, whose slopes are {a;}"_;,
respectively. We note that any cell can be rotated so that the
slopes are defined. Given a set T of strongly supported
smoothness functionals associated with A

n d d
dim SZ—(A):ZZU_rI,j +ZJ+1_5J
Jj=0

i=1 j=0
where
n
€j = Z mi j,
i=1
0, if there exists / with a; = aj and r;j < r;j,
mjj:=+<0, if there exists /| > i with a; = aj and rj = r;j,
J —rij, otherwise.



Theorem (2013)

Let SdT(A) with strongly supported T be defined on a cell /\ with
n edges. Given p€ {1,...,n} andv € {0,...,d}, let r,, < v be
the smoothness value in T associated with the edge e, on level v.
IfF7 =T U, Tlfféﬁﬂ remains strongly supported, then

ST(A) = ST'(A) if and only if

ey Sv+1,
and either
(i) e, has no collinear counterpart or

(ii) e, has a collinear counterpart with strictly higher smoothness
value on level v.



bivariate splines: more examples

Figure : dim S] = 4 Figure : dim S]" =4



bivariate splines: more examples

10

- dim S

Figure
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: dim ST

Figure



3, dim=12

r=1{2,2}, d

1,2),(1,2)},

r={(

Example:

6, dim = 33

Y= {5’5,4}, d

r={(4,5),(4,5),(3,4)},

Example:




example dim=48

Two non-collinear edges have smoothness 7 and 6. Three pairs of
collinear edges have pairs of smoothness (7,7),(5,7), (6,7). Then
for d = 8 the two non-collinear edges can be removed.

(Jef)ei)ei|

(Jel)el)ol)o}
I

In fact, the new space S§ with r = {(7,7),(5,7),(6,7)} is the
same as 5.



Theorem (2013)

Let A\ be a cell with m slopes and m pairs of collinear edges.
Suppose T is defined by the following smoothness conditions: for
each pair of collinear edges (e;, &), let (ri, pi) be the smoothness
across e; and €;, respectively, with the convention r; < p; < d.
Suppose T is defined by the following smoothness conditions: for
each pair of collinear edges (e;, &), let p; be the smoothness across
both of them. Then

/ o+l
ST(A) = ST (), whenever d < d*:= {Z’;l_r;—J



Theorem (2010)
Let A be a cell,

ppose the number of

and let smoothness r > 1. Su

different slopes m < r +2. Then

A

)

)

(

where A is a cell obtained from A by removing the edges with no

collinear counterparts.

(D) =5/

r

Example: r =3, d =4, m = 5. Three black edges can be removed.




mixed derivatives

Theorem (2012)

Let A be a cell with no non-collinear and 2/ collinear edges meeting
at v. Then for any s € S'"*(A) any I-th order mixed derivative
d's
8U,‘1 cee 8u,~, (V),

where uj,, ..., uj are pairwise distinct directions of non-collinear
edges, exists.



one directional derivative

Theorem (2012)

Let A\ be a cell with four non-collinear edges meeting at the

point v. Then there exists a unique straight line passing through v
with the property that for any smooth quadratic spline s on A\, the
restriction of s on this line is a univariate quadratic polynomial.




conclusions

e supersmoothness can help to compute and explain dimension
e supersmoothness could be a property of every multivariate spline

e the more symmetry the space has the less supersmoothness it
possesses

e symmetry of both the partition and the smoothness functionals
affects supersmoothness

e it appears that non-generic triangulations induce less
supersmoothness

e what about really high values of n....
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