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Construction of tight wavelet frames: UEP

Notations for Laurent polynomials:

T
d = {z ∈ C

d : |z1| = · · · = |zd | = 1}

p =
∑

α∈Zd

pαz
α ∈ R[Td ]

p∗ =
∑

α∈Zd

pαz
−α

Ex: p(z1, z2) = 2−k−l−m(1 + z1)
k(1 + z2)

l(1 + z1z2)
m

two-scale symbol of 3-directional box-spline

B(x) = 4
∑

α

pαB(2x − α), x ∈ R
2
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Construction of tight wavelet frames: UEP

M ∈ Z
d×d scaling matrix

G = M−1
Z
d/Zd

defines a group action on R[Td ]:

p 7→ pσ(z1, . . . , zd) := p(e2πiσ1z1, . . . , e
2πiσd zd), σ ∈ G .

Ex: M = 2I2

p(0,0)(z1, z2) = 2−k−l−m(1 + z1)
k(1 + z2)

l(1 + z1z2)
m

p(1,0)(z1, z2) = 2−k−l−m(1− z1)
k(1 + z2)

l(1− z1z2)
m

p(0,1)(z1, z2) = 2−k−l−m(1 + z1)
k(1− z2)

l(1− z1z2)
m

p(1,1)(z1, z2) = 2−k−l−m(1− z1)
k(1− z2)

l(1 + z1z2)
m
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Construction of tight wavelet frames: UEP

Unitary Extension Principle (Ron, Shen (1997)): Construction of tight
wavelet frames

Let p ∈ R[Td ], with p(1, . . . , 1) = 1, be the two-scale symbol of a
refinable function φ ∈ L2(R

d). Find qj ∈ R[Td ], 1 ≤ j ≤ N, such that

I −
(
pσ

)

σ∈G

(
pσ

)∗

σ∈G
=

N∑

j=1

(
qσj

)

σ∈G

(
qσj

)∗

σ∈G
.

Then the functions

ψj(x) =
∑

α∈Zd

qj ,αφ(M
T x − α), j = 1, . . . ,N,

generate a tight wavelet frame of L2(R
d).
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Construction of tight wavelet frames: UEP

Questions for given p ∈ R[Td ]:

1 Do q1, . . . , qN ∈ R[Td ] exist?

2 What is the smallest number N (number of frame generators)?

3 What is the smallest degree of qj ’s (support of frame generators)?

Find ways of construction or parameterization of all/some qj ’s.
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Construction of tight wavelet frames: UEP

Background on UEP

I − (pσ)(pσ)∗ = QQ∗ implies the “sub-QMF” condition

fp := 1−
∑

σ∈G

pσ∗pσ ≥ 0. (1)

Necessary and sufficient for the existence of qj is the sum-of-squares
(sos) decomposition

fp = 1−
∑

σ∈G

pσ∗pσ =
r∑

j=1

h∗j hj (2)

with suitable hj ∈ R[Td ].
necessary: Cauchy-Binet formula for detQQ∗

sufficient: Lai, St. (2006) with G -invariant hj , Charina et al. (2013)

Remark: Additional steps are required to pass from hj in (2) to qj in UEP.
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Positivity vs. Sum of Squares

Positivity vs. Sum of Squares

General result requires strict positivity:

Schmüdgen’s Positivstellensatz (1991):
Let g1, . . . , gn ∈ R[x1, . . . , xd ] and define
K := {x ∈ R

d : gj(x) ≥ 0, j = 1, . . . , n}.

If K is compact,
then any f ∈ R[x1, . . . , xd ] with f > 0 on K can be written as

f =
∑

β∈{0,1}n

hβ g
β1
1 · · · gβn

n , with hβ sos.

Does not apply to UEP : fp(1, . . . , 1) = 0
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Positivity vs. Sum of Squares

For non-negative f ∈ R[Td ], the dimension d is crucial:

d = 1 Riesz-Fejer lemma:

f ≥ 0 ⇐⇒ f = h∗h with h ∈ R[T] (same degree)

d = 2 Scheiderer’s result in Manuscripta Math. 2006:

Let V be a non-singular affine variety over R of dimension 2, whose real
points V (R) are compact. Then every f ∈ R[V ] with f ≥ 0 on V (R) is a
sum of squares in R[V ].

Ex: For 2-d butterfly scheme by Dyn, Gregory, Levin, we find N = 13 and

degree(qj) ≤degree(p).

Wavelet Frames and Algebraic Geometry 9 / 19



Positivity vs. Sum of Squares

d ≥ 3

There exists f ∈ R[Td ] which is not sos

Construction with homogeneous Motzkin polynomial in R[R3], which is

p(x , y , z) = x
4
y
2 + x

2
y
4 + z

6
− 3x2

y
2
z
2

For scaling matrix M = 2I , there exists p ∈ R[Td ] with
p(1, . . . , 1) = 1 such that

fp = 1−
∑

σ∈G

pσ∗pσ is not sos
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Positivity vs. Sum of Squares

There are sufficient conditions also for d ≥ 3.

Scheiderer (2003): Let V be a nonsingular affine variety over R for
which V (R) is compact. If f ≥ 0 on V (R) and for every ξ ∈ V (R)
with f (ξ) = 0, the Hessian of f at ξ is positive definite, then f is a
sum of squares in R[V ].

Ex:

If p is the two-scale symbol of a box-spline, fp satisfies the condition on its
Hessian; UEP constructions were known before, Gröchenig, Ron (1998), Chui, He
(2001), Charina, St. (2008)

The condition on the Hessian is not necessary:
For a 3-d interpolatory subdivision scheme by Chang et al. (2003), the function fp
has zero Hessian at some zero. We construct qj ’s for UEP with N = 31.
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Connections to semi-definite programming

Connections to semi-definite programming

1. Polynomials are written with the monomial vector t(z) = (zα)α∈I

p = t(z)Tp, p = (pα)α∈I

2. Due to zα(zβ)∗ = zα−β and
∑

α pα = 1 we have

1− pp∗ = t(z)T
(

diag(p)− ppT
︸ ︷︷ ︸

=: R

)

t(z∗)

R is called a Gram-matrix of 1− pp∗.
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Connections to semi-definite programming

Connections to semi-definite programming

1. Polynomials are written with the monomial vector t(z) = (zα)α∈I

p = t(z)Tp, p = (pα)α∈I

2. Due to zα(zβ)∗ = zα−β and
∑

α pα = 1 we have

1− pp∗ = t(z)T
(

diag(p)− ppT
︸ ︷︷ ︸

=: R

)

t(z∗)

R is called a Gram-matrix of 1− pp∗.

3. Find a symmetric matrix S ∈ R
|I |×|I | such that

R + S is positive semi-definite

and ∑

α∈I

Sα,α+β = 0 for all β.
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Connections to semi-definite programming

4. By

1− pp∗ = t(z)T
(

R + S
︸ ︷︷ ︸

semidef.

)

t(z∗),

any decomposition R + S =
∑N

j=1 hjh
T
j gives polynomials

hj = t(z)Thj with

1− pp∗ =
N∑

j=1

hjh
∗
j .

Note: Semi-definiteness of R + S requires extra care in SDP standard routines.

Wavelet Frames and Algebraic Geometry 13 / 19



Connections to semi-definite programming

By the “sum rules”

1

| detM|
=

∑

β

pγ+MTβ , γ ∈ Z
d/MT

Z
d ,

we can obtain solutions qj to UEP by stronger constraints:

3’. Find a symmetric matrix S ∈ R
|I |×|I | such that

R + S is positive semi-definite

and
∑

α∈I∩(γ+MTZd )

Sα,α+β = 0 for all β, γ ∈ Z
d/MT

Z
d .

4. R + S =
∑N

j=1 qjq
T
j gives polynomials qj = t(z)Tqj with

I − (pσ)(pσ)∗ =
N∑

j=1

(qσj )(q
σ
j )

∗.
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Connection to multidimensional systems

Connection to multidimensional systems

Let p be a polynomial, Dd = {|z1| < 1, . . . , |zd | < 1} the open polydisk in
C
d , and

|p(z)| < 1 for all z ∈ D
d .

Results by Agler (1990), Ball, Trent (1998), Agler, McCarthy (1999):
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Connection to multidimensional systems

The following are equivalent:

(a) p satisfies a von Neumann inequality; i.e., for every family
T1, . . . ,Td ∈ L(H) of commuting contractions on a Hilbert space H,

‖p(T1, . . . ,Td)‖op ≤ 1.

(b) There exist n1, . . . , nd ∈ N and a matrix

V =

(
A B

C D

)

∈ R
(1+N)×(1+N), with N =

∑

j nj and I − V ∗V ≥ 0,

such that
p(z) = A+ BE (z) (I − DE (z))−1 C ,

where E (z) =






z1In1
. . .

zd Ind




 .

Wavelet Frames and Algebraic Geometry 16 / 19



Connection to multidimensional systems

The matrix V =

(
A B

C D

)

∈ R
(1+N)×(1+N) is called a transfer function

realization for p.

To obtain an sos-decomposition of 1− |p|2:

Take I − V ∗V = X ∗X , with X = [Q,Y ] ∈ R
n0×(1+N) and first

column Q.

Then





Q Y

A B

C D



 is an isometry,

the polynomial vector

q(z) = Q + YE (z) (I − DE (z))−1 C

gives

1− |p(z)|2 =

n0∑

j=1

|qj(z)|
2, z ∈ D

d .
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Connection to multidimensional systems

Application to UEP requires:

operator version of the transfer “function” realization to vectors
(pσ(z))σ∈G
extension of the sub-QMF condition to the polydisk:

1−
∑

σ∈G

|pσ(z)|2 ≥ 0 for all z ∈ D
d .

In return, we obtain a parameterization of families of frame generators,
and of suitable two-scale symbols p.

Results and algorithms:

d = 1: system theory is completely developed

d = 2: every 2-d polynomial p with |p|2 ≤ 1 on the polydisk has a
transfer function realization (consequence of Ando’s dilation theorem)

Algorithm by Kummert (1989)

d ≥ 3: examples of polynomials which do not have a transfer function
realization, (Varopoulas)
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Conclusion

Conclusion

UEP construction of tight wavelet frames

is closely connected with sos-decomposition of non-negative
trigonometric polynomials,

profits from recent results in real algebraic geometry and
multidimensional systems,

can be automated by semi-definite programming or transfer function
representation.
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