On Approximate Polynomials,

By

Sōichi Kakeya in Sendai.

Lately, Mr. J. P. 41 has proved the following interesting theorem: (1) Let \(f(x) \) be a continuous function of a real variable \(x \) in the interval \(0 \leq |x| \leq a < 1 \), which vanishes at the point \(x = 0 \), and let \(\varepsilon \) be an arbitrary positive number, then there exists a polynomial \(P(x) \) with integral coefficients such that

\[
|f(x) - P(x)| < \varepsilon,
\]

for all values of \(x \) in the interval \(0 \leq |x| \leq a \).

In his theorem, it is necessary that the number \(a \), which is the upper limit of \(|x| \), is less than unity. To extend the theorem to the case when \(a \) is equal to unity is the aim of the following lines.

1. For our purpose, it is necessary to introduce a certain new condition for the given function \(f(x) \); and the theorem thus extended runs as follows:

Let a function \(f(x) \) be continuous in the interval \(0 \leq |x| \leq 1 \) and

\[
f(0) = f(1) = f(-1) = 0,
\]

then, for any given positive number \(\varepsilon \), there exists a corresponding polynomial \(P(x) \) with integral coefficients such that

\[
|f(x) - P(x)| < \varepsilon
\]

for all values of \(x \) in the interval \(0 \leq |x| \leq 1 \).

To prove this theorem, we first consider an auxiliary polynomial

\[
y = x(x+1)(x-1).
\]

As it is easily seen, the new variable \(y \) varies monotonously from 0 to \(\frac{2}{3\sqrt{3}} \), while \(x \) varies from \(-1 \) to \(-\frac{1}{\sqrt{3}} \), and \(y \) varies monotonously from \(\frac{2}{3\sqrt{3}} \) to 0, while \(x \) varies from \(-\frac{1}{\sqrt{3}} \) to 0. Consequently the two values \(p \) and \(q \) of \(x \) such that

\[
\begin{align*}
\sqrt{1 - q} &= \frac{2}{3\sqrt{3}} \\
p &= -\frac{1}{\sqrt{3}} \\
q &= \frac{2}{3\sqrt{3}}
\end{align*}
\]

\[(1)\] Tôhoku Math. Jour. vol. 6, 1914, p. 42.
(1) \(\psi(a) = 0\) for \(1 - g \leq |a| \leq 1 - \gamma\),
(2) \(\psi(a) = 1\) for \(\frac{1}{\sqrt{3}} \leq |a| \leq 1 - g\),
(3) \(\psi(a) = 1\) for \(\frac{1}{\sqrt{3}} \leq |a| \leq 1\).

Then the form of \(\psi(a)\) is determined as follows:

- For \(|a| < 1\), \(\psi(a) = 0\) or \(\psi(a) = 1\) depending on the value of \(2\sqrt{3} - 3\) or \(2\sqrt{3} - 2\).

Let it be denoted by

\(\psi(a) = \phi(a)\).

Therefore, if a function \(\phi(a)\) is continuous in the interval \((-1, 1)\), it varies from 0 to 1 in the intervals \(1 - g \leq |a| \leq 1\) and corresponding two variables. When \(a\) varies from 0 to 1, the variation of \(\phi(a)\) is symmetric with respect to the interval \((-1, 1)\).

Consequently, we must have

\(\phi(a) = \psi(a)\).

(3) \(\psi(a) = \phi(a)\) for \(0 \leq |a| \leq \frac{1}{\sqrt{3}}\).
point \(y = 0 \). Consequently, by the theorem of Mr. Pail, we can find a polynomial \(Q(y) \) with integral coefficients such that
\[
| \phi(y) - Q(y) | < \varepsilon_1 \quad \text{for} \quad 0 \leq |y| \leq \frac{2}{3\sqrt{3}}. \tag{8}
\]
If we put
\[
Q(y) = R(x),
\]
\(R(x) \) is also a polynomial with integral coefficients and is such that
\[
| \phi(x) - R(x) | < \varepsilon_1 \quad \text{for} \quad 0 \leq |x| \leq 1. \tag{10}
\]
Again, by the same theorem, we can find a polynomial \(S(x) \) with integral coefficients such that
\[
| f(x) - S(x) | < \varepsilon_1 \quad \text{for} \quad 0 \leq |x| \leq 1 - q_1. \tag{11}
\]
From (10) and (11), we get
\[
| f(x) \phi(x) - S(x) R(x) | < | f(x) | \varepsilon_1 + | \phi(x) | \varepsilon_1 + \varepsilon_1 \varepsilon_2 < M \varepsilon_1 + \varepsilon_1 \varepsilon_2, \tag{12}
\]
for the interval \(0 \leq |x| \leq 1 - q_1 \), where \(M \) is the greatest magnitude of \(|f(x)| \) in the interval \((-1, 1)\). Specially, if we consider only the interval in which \(\phi(x) \) becomes 1, we get
\[
| f(x) - S(x) R(x) | < M \varepsilon_1 + \varepsilon_1 + \varepsilon_1 \varepsilon_2 \quad \text{for} \quad p_1 \leq |x| \leq 1 - q_1. \tag{13}
\]
Since, in the intervals \(p_1 \leq |x| \leq p_1 \) and \(1 - q_1 \leq |x| \leq 1 - q_1 \), \(\phi(x) \) varies monotonously from 1 to 0, we have
\[
| f(x) - S(x) R(x) | \leq | f(x) \phi(x) - S(x) R(x) | + | f(x) - f(x) \phi(x) | < M (p_1 + p_1) + M \varepsilon_1 + \varepsilon_1 + \varepsilon_1 \varepsilon_2 \tag{14}
\]
for \(p_1 \leq |x| \leq p_1 \) or \(1 - q_1 \leq |x| \leq 1 - q_1 \), where \(M (p_1, p_1) \) is the greatest magnitude of \(|f(x)| \) in the intervals of (14).

In the remaining intervals \(\phi(x) \) becomes zero and hence \(|R(x)| \) becomes less than \(\varepsilon_1 \), so we have
\[
| f(x) - S(x) R(x) | \leq | f(x) | + | S(x) | + | R(x) | < M (p_1) + N (p_1) \varepsilon_1 \quad \text{for} \quad 0 \leq |x| \leq p_1, \quad \text{or} \quad 1 - q_1 \leq |x| \leq 1, \tag{15}
\]
where \(M (p_1) \) and \(N (p_1) \) are the greatest magnitudes of \(|f(x)| \) and \(|S(x)| \) respectively in the intervals of (15).

Take \(p_i, M (p_1, p_1) \) as function vanishing small, then \(M \varepsilon_1 \) an hand member sufficiently sma

for all values be supposed
If we p

\(P(x) \) is also get

for all values proved.

2. In \(f(x) \) vanishing by the \(\alpha = 0, 1 \) and

function

\(g(x) = f(x) \)

vanishes at

integral convention.

The abs

\(f(-1) \) can \(P(-1) \) resp

for sufficient

must be even.

The next

(1) This
Take p_1 and p_2 in the above discussion sufficiently small, then $M(p_1, p_2)$ and $M(p_2)$ become sufficiently small, for $f(x)$ is a continuous function vanishing at the points 0, 1, and -1. Next take ε, sufficiently small, then the quantity $N(p_2)$ is determined. Lastly, take ε, so small that $M(p_2)$ and $N(p_2)$ also become sufficiently small. Then the right hand members of all the inequalities (13), (14) and (15) become sufficiently small. Hence, combining these three inequalities, we get

$$|f(x) - S(x) R(x)| < \varepsilon$$ \hspace{1cm} (16)

for all values of x in the combined interval $0 \leq |x| \leq 1$, where ε can be supposed to be an arbitrarily small number.

If we put

$$S(x) R(x) = P(x),$$ \hspace{1cm} (17)

$P(x)$ is also a polynomial with integral coefficients, and, from (16) we get

$$|f(x) - P(x)| < \varepsilon$$ \hspace{1cm} (18)

for all values of x in the interval $0 \leq |x| \leq 1$. Thus our theorem is proved.

2. In the preceding theorem, we have given the condition that $f(x)$ vanishes at the points 0, 1, and -1. This condition can be replaced by the condition that $f(x)$ takes such the integral values at the points 0, 1 and -1 that $f(1) + f(-1)$ is even. For, in such a case, the function

$$g(x) = f(x) - \left[f(0) + \frac{f(1) - f(-1)}{2} - 2f(0)|x| \right]$$

vanishes at the said three points and $g(x) - f(x)$ is a polynomial with integral coefficients.

The above new condition is also necessary. For, since $f(0), f(1), f(-1)$ can be approached indefinitely near by the integers $P(0), P(1), P(-1)$ respectively, they must be also integers and

$$f(0) = P(0), \quad f(1) = P(1), \quad f(-1) = P(-1),$$

for sufficiently small ε. That

$$f(1) + f(-1) = P(1) + P(-1)$$

must be even is a special consequence of the following general theorem: (1)

The necessary and sufficient condition that the integral values $u_1, u_2,$

\hspace{1cm} (1') This follows at once from Newton's formula of interpolation.
......, u_n can be attained by a polynomial $P(x)$ with integral coefficients, for the integral values a_1, a_2, \ldots, a_n of x, is that all of the $n-1$ expressions

$$
\frac{u_1}{(a_1-a_2)(a_1-a_3) \ldots (a_1-a_k)} + \frac{u_2}{(a_2-a_1)(a_2-a_3) \ldots (a_2-a_k)} + \ldots
$$

$$
+ \frac{u_k}{(a_k-a_1)(a_k-a_2) \ldots (a_k-a_{k-1})}
$$

$k=2, 3, \ldots, n$

should be integers.

To extend the theorem to an interval greater than or equal to $(-2, 2)$ is impossible, unless the function $f(x)$ itself is a polynomial in that interval. For if there are two different polynomials $P_1(x)$ and $P_2(x)$ with integral coefficients such that

$$|f(x) - P_1(x)| < 1, \quad |f(x) - P_2(x)| < 1, \quad P_1(x) - P_2(x) \neq \text{const.}$$

in the interval $0 \leq |x| \leq a$ $(a \geq 2)$, then we get a polynomial

$$P_1(x) - P_2(x) = C_0 x^n + C_1 x^{n-1} + \ldots + C_n \quad (C_0 \neq 0)$$

with integral coefficients such that

$$|C_0 x^n + C_1 x^{n-1} + \ldots + C_n| < 2 \quad \text{for} \quad 0 \leq |x| \leq a;$$

and this contradicts the known theorem of Tschebyscheff (1) that there exists at least one point x in the interval $(-a, a)$ for which

$$|C_0 x^n + C_1 x^{n-1} + \ldots + C_n| \geq \frac{C_0}{2^{a-1}} a^n \geq 2C_0.$$

I cannot yet find out the upper limit of the intervals to which the theorem can be extended.

(1) Oeuvres, t. 1, pp. 273-278.