Corrections and emendations (as of 13apr16) for
A Practical Guide to Splines (revised edition)
by Carl de Boor

Each emendation is preceded by an ‘e’.

All items are of the form

\(a/b/c: \text{A} \rightarrow \text{B} [\text{C}]\)

meaning that, on \(a\)th, in \textit{paragraph} or item \(b\), in line \(c\), the text \text{A} should be changed to the text \text{B}, with \text{C} an additional comment. A negative paragraph number \(b\) or line number \(c\) indicates a count from the bottom (of the page or the specified paragraph). For example, vi/4/-1 = vi/-3/2 ends in ‘text.’ Comments are rare; a missing \text{B} means that the text \text{A} is to be omitted; a missing \text{A} means that the text \text{B} is to be inserted.

34//-1: \(\parallel \hat{\beta} \parallel \rightarrow \parallel \hat{\beta}^{\beta \beta \beta} \parallel\)

37//-1: \(\parallel \hat{\alpha} \parallel \leq 3 \parallel \hat{\beta} \parallel \rightarrow \parallel \alpha \parallel \leq 3 \parallel \hat{\beta} \parallel\)

38/problem 5./-2: \(\sqrt{T} \rightarrow \sqrt{|x|}\)

38/problem 5./-1: faster \(\rightarrow\) no faster

42/(9)/denominator: \(\Delta \tau_i + 1 \rightarrow \Delta \tau_i - 1\)

43/(13)/RHS: + \(\rightarrow\) –

65//4: 1, …, \(n-1\), with \(\rightarrow\) 0, …, \(n\), with \(\tau_0 = \tau_1\) and \(\tau_{n+1} = \tau_n\), hence

66/Problem 5./1: \(V(21) \rightarrow V(20)\)

66/Problem 5.(c)/3: \(\| \hat{E}_4 \| = \rightarrow \| \hat{E}_4^{(4)} \| =\)

89/-2/2: \((· - t_{j+1})^0_+ - (· - t_j)^0_+ \rightarrow (t_{j+1} - ·)^0_+ - (t_j - ·)^0_+\) [thank you, Jörg Peters!]

90/-2/-3/-1: \(t_{j+1} \rightarrow t_{j+2}\)

e95//1: \(\rightarrow\) (Marsden [1970: Theorem 1]).

e112//INTEGER: JP1 \(\rightarrow\) JOUT, JP1

e112//PARAMETER:) \(\rightarrow\), JOUT = MAX(JHIGH, (J+1)*(INDEX-1)))

e112//REAL: BIATX, T \(\rightarrow\) BIATX(JOUT), T(LEFT+JOUT)

e112//DIMENSION: [delete the entire line]

e116/(11)/1: . \(\rightarrow\) (Marsden [1970: Lemma 2]).

e116/(12)/: . \(\rightarrow\) \(= \sum_j \frac{\nabla \alpha_j}{\nabla j_{pk}} B_{j,k-1}.\)

e118//REAL: BREAK, COEF, T \(\rightarrow\) BREAK(L+1), COEF(K,L), T(N+K)

e118//DIMENSION: [delete the entire line]

141/3/6: approximation \(\rightarrow\) approximation, introduced in Schoenberg [1967],

212//10 P = 1 ./: [insert below it the statement: SIX1MP = 0 .]

212//20 P = 0 ./: [insert below it the statement: SIX1MP = 6 .]

212/SIX1MP = 6 ./1.+Q)/: [move this line to right after the line 59 P = ...]

e225//REAL: T(1) \(\rightarrow\) T(N+K)

e225//DIMENSION: [delete the entire line]

268//-3: \(s_i - [\tau_i, \tau_{i+1}] f \text{ and } s_{i+1} - [\tau_i, \tau_{i+1}] f \rightarrow s_i \Delta \tau_i - \Delta f_i \text{ and } s_{i+1} \Delta \tau_i - \Delta f_i\)

e273//: \(1 \rightarrow\) (•) [twice]

314/-2/4: exiting \(\rightarrow\) exciting [thank you, John Rice!]
Answers to specific problems (at the end of chapters) are available upon reasonable request.