Corrections and emendations (as of 12mar14) for
A Practical Guide to Splines (revised edition)
by Carl de Boor

Each emendation is preceded by an ‘e’.

All items are of the form
\[a/b/c: A \rightarrow B \langle C\rangle\]
meaning that, on _page_ \(a\), in _paragraph_ or _item_ \(b\), in _line_ \(c\), the text \(A\) should be changed to the text \(B\), with \(C\) an additional comment. A negative paragraph number \(b\) or line number \(c\) indicates a count from the bottom (of the page or the specified paragraph). For example, vi/4/-1 = vi/-3/2 ends in ‘text.’ Comments are rare; a missing \(B\) means that the text \(A\) is to be omitted; a missing \(A\) means that the text \(B\) is to be inserted.

34/-1: \(\|\hat{\beta}\| \rightarrow \|\hat{\beta}\|\)
37/-1: \(\|\hat{\alpha}\| \leq 3\|\hat{\beta}\| \rightarrow \|\alpha\| \leq 3\|\hat{\beta}\|\)
38/problem 5.-2: \(\sqrt{r} \rightarrow \sqrt{|x|}\)
38/problem 5.-1: faster \(\rightarrow\) no faster
42/(9)/denominator: \(\Delta r_{i+1} \rightarrow \Delta r_{i-1}\)
43/(13)/RHS: + \(\rightarrow\) –
65//: \(1,\ldots,n, \text{ with} \rightarrow 0,\ldots,n, \text{ with} \tau_0 = \tau_1 \text{ and } \tau_{n+1} = \tau_n, \text{ hence}
66/Problem 5./1: \(V(21) \rightarrow V(20)\)
66/Problem 5.(c)/3: \(\|\hat{E}_4\| = \rightarrow \|\hat{E}_4^{(4)}\| =\)
66/Problem 5.(c)/-1: \(V(21) \rightarrow V(20)\)
89/-2/2: \((t_j - t_{j+1})_+^0 - (t_j - t_{j+1})_+^0 \rightarrow (t_{j+1} - t_j)_+^0 - (t_j - t_{j+1})_+^0\)
e116/(12)/: \(\cdots \rightarrow = \sum_j \frac{\nabla \alpha_j}{\nabla f_{jk}} B_{j,k-1}\).
141/3/6: approximation \(\rightarrow\) approximation, introduced in Schoenberg [1967],
212/10 \(P = 1.\) \[\rightarrow\] [insert below it the statement: \(\text{SIX1MP} = 0.\)]
212/20 \(P = 0.\) \[\rightarrow\] [insert below it the statement: \(\text{SIX1MP} = 6.\)]
212/SIX1MP = 6. \((1.+:Q)\) \[\rightarrow\] [move this line to right after the line 59 \(P = \ldots\)]
268/-3: \(s_i - [\tau_i, \tau_{i+1}]f \text{ and } s_{i+1} - [\tau_i, \tau_{i+1}]f \rightarrow s_i \Delta \tau_i - \Delta f_i \text{ and } s_{i+1} \Delta \tau_i - \Delta f_i\)

Answers to specific problems (at the end of chapters) are available upon reasonable request.