The Bernstein basis

In anticipation of the multivariate setup, we define here the elements of the Bernstein bases by
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bj”“(x)::( )fvj(l—@’“, G k=0,1,2,....

Then the (n + 1)-sequence by, := (b n—; : 7 = 0:n) is in the (n + 1)-dimensional linear space Il<,, and is
linearly independent since, e.g., the matrix

(D'b; n—;(0) : 4,5 = 0:n)

is triangular with nonzero diagonal entries, hence invertible, therefore a basis for Il<,,.

Note that
ij,n,j(x) => <T,L>J:j(1 —x)" =@k + (1-2)"=1.
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Hence, for any k£ <n,
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using the fact that ¢(n, k, j) so defined is zero for j < k since (?:,]:) is then zero.
It follows that, for an arbitrary p € Il<,,,
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For the multivariate Bernstein basis, see (multivariate) polynomials > polynomial forms > BB-
form.



