The Bernstein basis

In anticipation of the multivariate setup, we define here the elements of the Bernstein bases by

$$b_{j,k}(x) := {j+k \choose j} x^j (1-x)^k, \quad j,k = 0, 1, 2, \dots$$

Then the (n+1)-sequence $\mathbf{b}_n := (b_{j,n-j} : j=0:n)$ is in the (n+1)-dimensional linear space $\Pi_{\leq n}$ and is linearly independent since, e.g., the matrix

$$(D^i b_{j,n-j}(0): i, j = 0:n)$$

is triangular with nonzero diagonal entries, hence invertible, therefore a basis for $\Pi_{\leq n}$.

Note that

$$\sum_{j} b_{j,n-j}(x) = \sum_{j} \binom{n}{j} x^{j} (1-x)^{n-j} = (x + (1-x))^{n} = 1.$$

Hence, for any $k \leq n$,

$$x^{k} = x^{k} \sum_{j=0}^{n-k} {n-k \choose j} x^{j} (1-x)^{n-k-j}$$
$$= \sum_{j=k}^{n} {n-k \choose j-k} x^{j} (1-x)^{n-j}$$
$$= \sum_{j=0}^{n} c(k, n, j) b_{j, n-j}(x)$$

with

$$c(n,k,j) := \binom{n-k}{j-k} / \binom{n}{j} = \frac{(n-k)!j!(n-j)!}{(n-j)!(j-k)!n!} = \frac{j(j-1)\cdots(j-k+1)}{n(n-1)\cdots(n-k+1)},$$

using the fact that c(n, k, j) so defined is zero for j < k since $\binom{n-k}{j-k}$ is then zero.

It follows that, for an arbitrary $p \in \Pi_{\leq n}$,

$$p = \sum_{j=0}^{n} \widehat{p}_{n,j} b_{j,n-j},$$

with

$$\widehat{p}_{n,j} := \sum_{i=0}^{j} \binom{n-i}{j-i} / \binom{n}{j} D^i p(0) / i!.$$

For the multivariate Bernstein basis, see (multivariate) polynomials > polynomial forms > BB-form.