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1. Specialization to the knot sequence Z .

This chapter deals with splines with a uniform knot sequence, i.e., with the knot
sequence

Z := (j)∞j=−∞

and, more generally, the sequence hZ + α := (hj + α)j∈Z .
Splines with a uniform knot sequence have been investigated much more extensively

and for a much longer time than general polynomial splines. Not only was Schoenberg’s
fundamental paper [S] dedicated to such splines, but earlier mathematical literature from
Quade and Collatz [QC], Kolmogorov [K], Eagle [E], back to Frobenius [F], Hermite and
Sonin [HS] and even Laplace [L] has dealt with various aspects of splines with uniformly
spaced knots. The thorough and detailed knowledge about such splines now available
has been obtained largely through Fourier analysis, applicable because of their regular
structure.

This regular structure allows one to simplify many of the results of the preceding
chapter. We list the following examples.

Let (Nj,k)j be the sequence of B–splines of order k for the knot sequence Z. Then

(1.1) N0,k(t) =
k∑

ν=0

(−)ν
(

k

ν

)
(t − ν)k−1

+ /(k − 1)! =
k∑

ν=0

(−)k−ν
(

k

ν

)
(ν − t)k−1

+ /(k − 1)

and

(1.2) Mj,k = Nj,k = N0,k(· − j).

Differentiation of a B–spline series now simplifies to differencing, i.e., (I.4.2) becomes

(1.3) Dν
( ∑

j

αjNj,k

)
=

∑

j

∇ναjNj,k−ν , ν = 0, . . . , k − 1.

We will make extensive use of the second of Schoenberg’s abbreviations

(1.4) Qk := N0,k , Mk := N0,k(· + k/2) ,

who calls it the forward, respectively the central, B–spline of order k since

(1.5) ∆kf(0) =

∫
Qk(s)f

(k)(s) ds , δkf(0) =

∫
Mk(s)f

(k)(s) ds

gives the forward, respectively the central, difference of order k (with step 1). (Recall that
k! [0, . . . , k]f = ∆kf(0) .)

In particular, the Fourier transform for Mk is easily seen to be

(1.6) M̂k(t) :=

∫ ∞

−∞

Mk(s) eist ds =

(
sin t/2

t/2

)k
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since, for f(s) := eist, δkf(s) = (2i sin t/2)kf(s) while f (k)(s) = (it)k eist. Hence, also

(1.7) Mk = Mk−r ∗ Mr :=

∫
Mk−r(· − s)Mr(s) ds

since the Fourier transform associates products with convolutions. It follows that Mk

is the (k − 1)–fold convolution of the characteristic function of [−1/2 . . 1/2] with itself.
Consequently, Mk is the distribution of the sum of k independent random variables, each
uniformly distributed on [−1/2 . . 1/2], for which reason these B–splines occur already in
the works of Laplace.

We will use the abbreviation

(1.8) Sk :=
{∑

j

αjMk(· − j) : αj ∈ C , all j ∈ Z

}
.

With the choice τj = j + k/2, all j, the identity

f =
∑

j

(
λτj ,ψj,k

f
)
Nj,k , all f ∈ Sk,Z,

obtained from (I.2.2) Lemma and its corollary, translates into

(1.9a) f =
∑

j

λkf(· + j)Mk(· − j) , all f ∈ Sk

with

(1.9b) λkf =
∑

ν<k

(−)νB(k)
ν (k/2)/ν! f (ν)(0).

Here, B
(k)
ν (t) denotes the Bernoulli polynomial of order k and degree ν, i.e., (B

(k)
ν /ν! : ν)

is the Appell sequence for k![0, . . . , k]D−k, hence

(1.10) ezt
(

z

ez − 1

)k
=

∞∑

ν=0

B(k)
ν (t)/ν! zν ( on |z| < 2π)

is its generating function (see [N: p. 145]), and (1.9) follows from (I.2.2) Lemma via the
fact [N: p. 148] that

B(n+1)
ν /ν! = Dn−ν(· − 1) · · · (· − n)/n! .

Note that (1.10) reduces to

(1.11)

(
z/2

sin z/2

)k
=

∞∑

ν=0

B(k)
ν (k/2)/ν! (iz)ν
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for t = k/2, hence B
(k)
ν (k/2) = 0 for odd ν. More specifically,

(1.12) B(k)
ν (k/2) = D(k)

ν /2ν

(see [N: equ.(43) on p. 130]), with D
(k)
ν a polynomial of degree ν/2 in k, the first few of

which (see [N: p. 460]) are

(1.13)

ν D
(k)
ν

0 1
2 −k/3
4 k(5k + 2)/15
6 −k(35k2 + 42k + 16)/63
8 k(175k3 + 420k2 + 404k + 144)/135
10 −k(385k4 + 1540k3 + 2684k2 + 2288k + 768)/99

2. Cardinal spline interpolation

Cardinal spline interpolation is concerned with the construction and study of (partial)
right inverses for the linear map

(2.1) Ck : CZ → CZ : ααααα 7→
(∑

j

αjMk(ν − j)
)∞

ν=−∞

and thereby for its factor

Sk → CZ : ϕ 7→ (ϕ(ν))∞ν=−∞.

Let
m := ⌊(k − 1)/2⌋ .

Since Mk(ν) 6= 0 iff |ν| < k/2,
Ckααααα = βββββ

is a linear difference equation of order 2m with real constant coefficients, hence has solutions

for arbitrary βββββ ∈ CZ. These solutions can be constructed by choosing α−m, . . . , αm−1

arbitrarily and then computing

αν+m =
(
βν −

∑

j<ν+m

αjMk(ν − j)
)
/Mk(−m) , ν = 0, 1, . . .

αν−m =
(
βν −

∑

j>ν−m

αjMk(ν − j)
)
/Mk(m) , ν = −1,−2, . . .

In short,
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2.2. Ck is onto and has a kernel of dimension 2m.

On subspaces of sequences which do not grow too fast at infinity, an explicit inverse for
Ck can be constructed as follows. Ckααααα is given by the convolution of ααααα with the sequence
(Mk(ν))ν which is trivially in ℓ1; in fact,

∑
ν |Mk(ν)| =

∑
ν Mk(ν) = 1. Hence

‖Ckααααα‖p ≤ ‖ααααα‖p , for all ααααα ∈ ℓp .

Further, since

ck(z) :=

∞∑

n=−∞

Mk(n) zn

does not vanish on |z| = 1 (see (2.4) below), there exists ωk ∈ ℓ1 (in fact, ωk(j) goes to
zero exponentially as j → +∞ by (2.9) below) such that

∞∑

j=−∞

ωk(j)z
j = 1/ck(z) on |z| = 1 .

But then

1 =
(∑

µ

ωk(µ)zµ
) (∑

ν

Mk(ν)zν
)

=
∑

j

( ∑

µ+ν=j

ωk(µ)Mk(ν)
)
zj on |z| = 1

showing that ∑

µ+ν=j

ωk(µ)Mk(ν) = δ0j , all j ∈ ZZ .

Hence,

2.3.
ℓp → ℓp : ααααα 7→

(∑

j

αjωk(ν − j)
)∞
ν=−∞

is the inverse for Ck ℓp
, and ‖(Ck ℓp

)−1‖ ≤ ‖ωωωωωk‖1, 1 ≤ p ≤ ∞ .

Since Mk is real, even, and Mk(t) = 0 for |t| ≥ k/2,

ck(z) =
∑

|j|<k/2

Mk(j)z
j

is a rational function with real coefficients, invariant under z 7→ 1/z, hence real on |z| = 1.

2.4 Lemma. With m := ⌊(k− 1)/2)⌋, the function ck(z) =
∑
j Mk(j)z

j has exactly 2m
zeros, all negative and simple, with λ a zero iff 1/λ is.

Proof: For τ ∈ (0 . . 1], define the polynomial

πn,τ (z) :=

n∑

j=0

N0,n+1(n + 1 − τ − j)zj .
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Then

πn,τ (z) =
∑

j

N0,n+1(τ + j)zj =
∑

j

Mn+1

(
τ + j − (n + 1)/2

)
zj

= z(n+1)/2−τ
∑

j

Mn+1

(
τ + j − (n + 1)/2

)
zτ+j−(n+1)/2 .

Hence

zmck(z) =






πk−1,1/2(z) , k odd
,

πk−1,1(z) , k even

a selfreciprocal polynomial of degree 2m. It is therefore sufficient to prove that, for τ ∈
(0 . . 1] and all n ≥ 1, all the zeros of πn,τ are negative and simple. For this, we follow
Schoenberg and introduce, for z ∈ C\{0}, the exponential spline of degree n to the
base z,

(2.5) Φn,z :=
∑

j

zjNj,n+1 ,

which spans the subspace of those s ∈ Sn+1,ZZ satisfying the functional equation

s(t + 1) = zs(t), all t ∈ IR .

In terms of this spline,

πn,τ (z) =

n∑

j=0

Nj,n+1(n + 1 − τ)zj = Φn,z(n + 1 − τ) = znΦn,z(1 − τ) ,

hence

(2.6) π(1)
n,τ (z) = (n/z)πn,τ (z) + zn(∂/∂z)Φn,z(1 − τ) .

Further, by (I.4.3),

Φn+1,z(t) =
∑

j

(
(1 +

z − 1

n + 1
t) +

1 − z

n + 1
j

)
zj−1 Nj,n+1(t)

which, combined with (2.6), gives the recurrence relation

(2.7)
πn+1,τ (z) =

(
z + τ

1 − z

n + 1

)
πn,τ (z) + z

1 − z

n + 1
π(1)
n,τ (z), n > 0

π0,τ (z) = 1

It follows that πn+1,τ (0) = (τ/(n+1))πn,τ(0) > 0, while, for every negative zero λ of πn,τ ,

πn+1,τ (λ)π
(1)
n,τ (λ) < 0 and, finally, πn+1,τ has a positive leading coefficient. Therefore,

induction on n gives that, for τ ∈ (0 . . 1), πn,τ has the n distinct and negative zeros
λn,n(τ) < · · · < λ1,n(τ) with the zeros of πn−1,τ interlacing those of πn,τ , i.e., λi+1,n(τ) <
λi,n−1(τ) < λi,n(τ). These statements remain true for τ = 1 except that now λn,n(1

−) =
−∞, i.e., πn,1 is only of degree n − 1 and has, correspondingly, only n − 1 zeros.
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2.8 Corollary. For some ⌊(k − 1)/2⌋–point subset Γk of (0 . . 1),

ck(z) =
∏

γ∈Γk

1 + γz

1 + γ

1 + γ/z

1 + γ
.

It follows that the function
ϕk(θ) := ck(e

iθ)

is of the form
ϕk(θ) = constk

∏

γ∈Γk

fγ(θ)

where, for γ ∈ (0 . . 1),

fγ(θ) := (1 + γeiθ)(1 + γe−iθ) = |1 + γe−iθ|2

is positive, 2π–periodic and even, and strictly monotone decreasing from its maximum
value at θ = 0 to its minimum value at θ = π. Hence,

2.9. ϕk is positive, 2π–periodic and even and, for k > 2, strictly decreases from its maxi-
mum value 1 = ϕk(0) to its positive minimum value

∏
γ∈Γk

(1 − γ)2/(1 + γ)2 = ϕk(π).

Also, (2.8) implies that, near |z| = 1,

∑

n

ωk(n)zn = 1/ck(z) =
∏

γ∈Γk

1 + γ

1 + γz

1 + γ

1 + γ/z

hence

(2.10)

ωk(n) = ωk(−n) ∈ IR

ωk(n) = δ0n , k = 1, 2

0 < (−)nωk(n) < const
(
max
γ∈Γk

γ
)|n|

, k > 2





, all n ∈ ZZ .

In particular,

(2.11) ‖ωωωωωk‖1 = 1/ck(−1) = 1/ϕk(π) ,

which, with (2.3), implies that

‖(Ck
∣∣∣
ℓp

)−1‖ ≤ 1/ϕk(π) .

Equality occurs here for p = ∞, the norm being taken on at the sequence ((−)n)n∈ZZ .
Equality also occurs for p = 2 since the unitary map

ℓ2 → IL2(−π, π] : ααααα 7→
∑

n

αne
inθ/

√
2π
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carries Ck ℓ2
to multiplication by ϕk. But neither Ck ℓ2

nor its inverse take on their norm

since, by (2.9), ϕk fails to be constant on a set of positive measure, hence Ck ℓ2
has no

point spectrum. By interpolation, ‖(Ck ℓp
)−1‖ is a convex function of p on 1 ≤ p ≤ ∞,

therefore, as it equals its upper bound 1/ϕk(π) at p = 2 and p = ∞, it follows that

(2.12) ‖(Ck ℓp
)−1‖ = 1/ϕk(π) for 1 ≤ p ≤ ∞ .

The same argument also shows that

(2.13) ‖Ck ℓp
‖ = ϕk(0) = 1, 1 ≤ p ≤ ∞ .

The number
1/ϕk(π) =

∏

γ∈Γk

(1 + γ)2/(1 − γ)2

is related to Favard’s constant (see ???) and admits various other representations. E.g.,
applying Poisson’s summation formula

∑

n

f(x − n) =
∑

n

∫ ∞

−∞

f(s) e−2πisn ds e2πixn

at x = 0 to f(s) := Mk(s) eisθ, one finds that

(2.14) ϕk(θ) =
∑

n

Mk(n) einθ =
∑

n

M̂k(θ + 2πn)

where, by (1.6), M̂k(u) = ((sinu/2)/(u/2))k. Hence

(2.15) 1/ϕk(π) =
1

2

(
π

2

)k /
∞∑

n=0

(−)nk/ (2n + 1)k .

Equivalently (see also ),

(2.16) ϕk(π) =

{
(−)k/2Bk 2k(1 − 2k)/k! , k even
(−)(k−1)/2Ek−1/(k − 1)! , k odd

with Bj and Ej the Bernoulli and Euler numbers, respectively. The first few values are

(2.17) k 1/ϕk(π)
1 1
2 1
3 2

k 1/ϕk(π)
4 3
5 4.8
6 7.5

k 1/ϕk(π)
7 720/61=11.803..
8 315/17=18.529..
9 8064/277=29.111..

and, already for k = 10, 1/ϕk(π) is within .002% of (π/2)k/2.
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By (2.8), ker Ck has a basis consisting of the 2m sequences

(λν)ν∈ZZ, with − λ or − 1/λ in Γk .

As Γk ⊆ (0 . . 1), it follows that ααααα ∈ ker Ck\{0} implies that γnk max{|αn|, |α−n|} fails to
go to zero as n → ∞, with

γk := max
γ∈Γk

γ .

Ck is therefore 1-1 on any subspace of CZZ whose elements do not grow too fast at +∞.
To give an example, Ck is 1-1 on

ℓ∞,γ :=
{
ααααα ∈ CZZ : ‖ααααα‖∞,γ := sup

ν
γ|ν| |αν | < ∞

}

for any γ > γk. Actually, much more is true. Define the shift E on CZZ by the rule

(Eααααα)ν = αν+1, all ν ∈ ZZ .

Then E and E−1 map ℓ∞,γ into itself, hence so does En for all n ∈ ZZ, while

‖En
ℓ∞,γ

‖ = sup
ααααα

supν γ|ν| |αn+ν |
supν γ|ν| |αν |

≤ γ−|n| , all n ∈ ZZ

if γ ∈ (0 . . 1]. Therefore, as

‖ωωωωωk ∗ ααααα‖∞,γ = ‖
∑

n

ωk(−n) (Enααααα)‖∞,γ ≤
∑

n

|ωk(−n)| ‖En‖ ‖ααααα‖∞,γ ,

one gets from (2.10) that

‖ωωωωωk ∗ ·
∣∣∣
ℓ∞,γ

‖ ≤
∑

n

|ωk(−n)|γ−|n| ≤ const
∑

n

(γk/γ)n < ∞

provided γ ∈ (γk . . 1]. This proves a particular instance of the

2.18 Theorem. If the linear subspace X of CZZ is invariant under the shift E and its
inverse E−1, and if, with respect to some norm on X , the sequence (‖En‖)n∈ZZ of corre-
sponding norms satisfies ∑

n

‖En‖γ|n|
k < ∞ ,

then Ck X is a bounded map from X onto X and has convolution with ωωωωωk as its inverse,

with ‖(Ck X)−1‖ ≤ ∑
n ‖En‖γ|n|

k .

A rather different description for (Ck X)−1 can be given in case X = IPr ZZ. For
p ∈ IPr,

∑

µ

p(µ) Mk(ν − µ) =
∑

µ

p(µ + ν) Mk(−µ) =
∑

j

p(j) (ν)
∑

µ

µj/j! Mk(−µ)

=
∑

j

p(2j)(ν) (−)jδ
(k)
2j
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hence
Ck(p ZZ) =

(∑

j

(−)jδ
(k)
2j p(2j)

)
ZZ

with (δ
(k)
j )∞j=0 the coefficients in the Taylor series expansion for ϕk(θ) =

∑
µ eiµθ Mk(µ)

around θ = 0, i.e.,

ϕk(θ) =
∞∑

j=0

δ
(k)
2j θ2j

since ϕk is an even function. In particular, δ
(k)
0 = ϕk(0) = 1, hence

2.19. Ck maps IPr ZZ onto itself and preserves leading coefficients.

I.e.,
(1 − Ck) IPr ZZ ⊆ IPr−1 ZZ .

Ck restricted to IPr ZZ is therefore invertible and, since IPr ZZ ⊆ ℓ∞,γ for every γ ∈ (γk . .1)
while

1/ϕk(u) =
∑

µ

eiµuωk(µ) ,

its inverse is given by

(2.20) p ZZ 7→
( ∞∑

j=0

(−)jγ
(k)
2j p(2j)

)
ZZ

with

(2.21) 1/ϕk(θ) =
∞∑

j=0

γ
(k)
2j θ2j .

Incidentally, (2.8) implies that 1/ϕk(u) is 2π–periodic with all its singularities in the
period strip 0 ≤ Re u < 2π on the line Re u = π and off the real line. The series (2.21)
has therefore radius of convergence π + Bk for some positive constant Bk which implies
that

|γ(k)
2j | ≤ Ak(π + Bk)

−2j , all j ,

for an appropriate constant Ak. Therefore:

2.22. The map (2.20) is defined for every entire function p of exponential type < π + Bk

and produces a sequence ααααα = αααααp so that

Ckαααααp = p ZZ.

Finally, the map

f 7→
(∑

j<k

(−)j B
(k)
j (k/2)/j! f (j)

)
ZZ
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carries each f ∈ Sk to the sequence of its B-spline coefficients, by (1.9), hence must agree
with (2.20) whenever f = p ∈ IPk ⊆ Sk. This implies that

(−)j γ
(k)
2j = B

(k)
2j (k/2)/(2j)! , all 2j < k ,

i.e., that

(2.23) 1/ϕk(θ) = 1/M̂k(θ) + O(θk) .

3. The exponential splines

Cardinal spline interpolation can be extended to certain functions of faster than power
growth with the aid of the exponential splines. For

z ∈ C\{0, 1} ,

the exponential spline of degree n to the base z was introduced in (2.5) as the function

Φn,z :=
∑

j

zjNj,n+1

which, up to scalar multiples, is the unique solution in Sn+1,ZZ of the functional equation

f(t + 1) = zf(t), all t ∈ IR .

If Φn,z(τ) 6= 0 for some τ ∈ [0 . . 1), then

(3.1) Sn,z,τ := zτΦn,z/Φn,z(τ)

is an element of Sn+1,ZZ which agrees with the exponential function

zt := |z|t eit arg z, t ∈ IR ,

at the integer translates τ + k, all k ∈ ZZ, of τ .
The interpolant Sn,z,τ is defined for all bases z ∈ C\{0, 1} with n− 1 or n exceptions.

By (2.4) Lemma, the polynomial

πn,1−τ (z) = znΦn,z(τ)

in z has exactly ⌈n − 1 + τ⌉ zeros zν = zν(n, τ), all negative and simple. The corre-
sponding exponential spline Φn,zν

has been called an eigenspline, with zν its associated
eigenvalue. Since zν is negative, such an eigenspline grows exponentially either for t → ∞
or else for t → −∞ unless zν = −1. Hence, τ is associated with a bounded eigenspline iff
zν(n, τ) = −1 for some ν, i.e., iff Φn,−1(τ) = 0. This happens for odd n at τ = 1/2 and
nowhere else in [0 . .1) and for even n at τ = 0 and nowhere else in [0 . .1) (see (3.5) below).
In short, bounded eigensplines are very rare:
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3.2. If ϕ ∈ Sn+1,ZZ\{0} is of power growth and vanishes at τ + k for some τ ∈ [0 . . 1) and
all k ∈ ZZ, then τ = 1/2 and ϕ = αEn for odd n, and τ = 0 and ϕ = αEn(·−1/2) for even
n.

Here, En is the Euler spline,

(3.3) En :=
∑

j

(−)jMn+1(· − j)/ϕn+1(π);

i.e., the bounded cardinal spline interpolant to the sequence ((−)ν)ν∈ZZ, with ϕn+1(π) =∑
j(−)jMn+1(−j) described in detail in (2.15)–(2.17).

In order to prove the above mentioned fact about the zeros of Φn,−1, and for a better
understanding of exponential splines, consider now the polynomial Φn,z (0..1). Since ∇zj =

zj(1 − 1/z), (1.3) implies that

Φ(ν)
n,z = (1 − 1/z)ν Φn−ν,z, ν = 0, . . . , n .

Hence, with An,z the polynomial of degree ≤ n for which

(3.4) An,z = Φn,z/(1 − 1/z)n on (0 . . 1),

we have
A(ν)
n,z(1) = zA(ν)

n,z(0), ν = 0, . . . , n − 1; A(n)
n,z = 1

showing that (An,z)
∞
n=0 is the Appell sequence for the linear functional

µz := ([1] − z[0])/(1 − z) ,

i.e., (An,z)n is the unique sequence of polynomials satisfying

degree An,z ≤ n

, all m, n ≥ 0 .

µzD
mAn,z = δm,n

This can be said slightly differently: An,z is the unique polynomial solution (neces-
sarily of degree n) for the difference equation

An,z(t + 1) − zAn,z(t)

1 − z
= tn/n! .

In the special case z = −1, this becomes the well-known equation(
An,−1(t + 1) + An,−1(t)

)
/2 = tn/n!

whose solution is An,−1 = En/n! , with En the Euler polynomial of degree n (see [N:
p. 23ff]). Since (An,−1) is the Appell sequence for µ−1 = ([0] + [1])/2, it follows that

An,−1 =

∫

1/2

An−1,−1(s) ds − µ−1

∫

1/2

An−1,−1(s) ds.

Further, µ−1 annihilates functions odd around 1/2, while
∫
1/2

maps functions odd {even}
around 1/2 to functions even {odd} around 1/2. Hence, En/n! = An,−1 is odd or even
around 1/2 as n is odd or even. In particular, An,−1(1/2) = 0 for odd n, while, for even
n, An,−1(0) = An,−1(1), but also 0 = µ−1 An,−1 = (An,−1(0) + An,−1(1))/2, therefore
An,−1(0) = 0. Finally, if An−1,−1 has no other zeros in [0 . . 1], – and this is certainly so
for n = 2, 3, – then An,−1 can have no other zeros, by Rolle’s Theorem. This proves:
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3.5 Result. For even
odd n, Φn,−1 is even

odd around each half integer k + 1/2, and odd
even

around each integer k, and vanishes in [0 . . 1) only at 0
1/2 . Correspondingly, the Euler

spline En is even
odd around each half integer, and vanishes only at the half integers.

The Euler spline was given its name (by Schoenberg) because of the fact that it, like
Φn,−1, is composed of (properly scaled) Euler polynomials.

For n = 0, An,z = 1. For n > 0, one obtains a convenient expansion for An,z from the
generating function ewt/µz(e

w·) for the Appell sequence (An,z), i.e., from

(3.6) ewt
1 − z

ew − z
=

∞∑

ν=0

Aν,z(t) wν .

On dividing (3.6) by wn+1, one finds that the function

F (w) := ewt (1 − z)/
(
(ew − z)wn+1

)
=

∞∑

ν=0

Aν,z(t) wν−n−1

is meromorphic, with a residue of
An,z(t)

at its pole of order n + 1 at 0, and, for ν ∈ ZZ, a residue of

ewνt(1 − z)/(zwn+1
ν )

at its simple pole at
wν := ln |z| + i(arg z + 2πν) ,

and no other poles. Hence

An,z(t) + (z−1 − 1)
N∑

ν=−N

ewνt/wn+1 =

∮

SN

F (w) dw

with SN the boundary of the square of side length (4N + 2)π centered at z. Since, for
t ∈ [0 . . 1], the line integral goes to zero as N → ∞, while An,z = Φn,z/(1 − 1/z)n, we
conclude that

(3.7a) Φn,z(t) = (1 − 1/z)n+1 zt
∑

ν∈ZZ

w−n−1
ν e2πiνt

where

(3.7b) wν = ln |z| + i(arg z + 2πν) .

Note that (3.7a) is valid for all t ∈ IR since we just proved it for t ∈ [0 . . 1] and both sides
of (3.7a) satisfy the functional equation f(t + 1) = zf(t).

It follows that the interpolant (3.1) for zt is of the form

(3.8a) Sn,z,τ (t) = ztΩn,z(t)/Ωn,z(τ)

with Ωn,z the 1-periodic function given in terms of its Fourier series as

(3.8b) Ωn,z(t) :=
∑

ν∈ZZ

e2πiνt/wn+1
ν .

13



4. Cardinal spline interpolation as the degree goes to infinity

5. Approximation of cardinal type

The interpolation process

(Wf)(x) :=
∑

n=∈ZZ

f(n)
sin π(x − n)

π(x − n)

was studied in great detail by de la Vallée-Poussin [LVP] who called it the fundamental
interpolation formula. The process was later used by Whittaker [W] for which reason the
series is now known as Whittaker’s cardinal series. It served Schoenberg [S] as the
prototype for cardinal interpolation,

f ∼
∑

n∈ZZ

f(n) L(· − n)

with L(m) = δ0m. In this section, we consider, more generally, approximators of car-
dinal type, i.e., linear maps of the form

(5.1) T = TL,λ :=
∑

n∈ZZ

E−n L ⊗ λEn

with
|L(x)| ≤ A e−B|x| for some positive A, B,

λ ∈ C∗(IR)

and E now also denoting the unit shift,

(5.2) (Ef)(x) := f(x + 1)

for functions f on IR.
For such a map T , let

(5.3) T (h) := S1/hTSh

with Sα denoting the α–stretch,

(5.4) (Sαf)(x) := f(αx) .

Then T (h)f provides an approximation to f whose convergence behavior as h → 0 reflects
the local behavior of f . The following lemma is typical.

5.5 Lemma. If λ has bounded support and the map T = TL,λ of cardinal type reproduces
IPk, then

|
(
f − T (h) f

)
(x)| ≤ constT hk−1 ω

(
f (k−1) , h; x

)

whenever f : IR → C has k − 1 continuous derivatives and satisfies

lim
|x|→∞

∣∣e−B|x| f(x)
∣∣ = 0 .

Proof:
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Cardinal monosplines of least IL∞–norm are the topic of Schoenberg and Ziegler
[SZ]. Here, the problem is to minimize ‖ · ‖∞ over

IMr
m :=

{
f ∈ IPm+1,ZZ ∩ C(r)(R) : Dmf = m!

}
,

i.e., to find

αm,r := inf
{
‖f‖∞ : f ∈ IMr

m

}

for −1 ≤ r ≤ m−2. The number αm,r is finite since IMr
m contains the 1–periodic extension

Bm to all of IR of the m–th Bernoulli polynomial Bm [0..1] on [0 . . 1], the Bernoulli
monospline. This allows one to rewrite IMr

m as

IMr
m = Bm − IPm,ZZ ∩ C(r)(IR) .

It follows that IMr
m is shift-invariant (i.e., invariant under the unit shift E) and closed

under uniform convergence on compact sets. Hence

Lemma. For all f ∈ IMr
m there exists g ∈ IMr

m so that ‖g‖∞ ≤ ‖f‖∞ and Eg = g.

Proof: The map An :=
∑n−1
j=0 Ej/n leaves IMr

m invariant and is norm reducing,
therefore (Anf)n has limit points (under uniform convergence on compact sets) and all
such limit points g lie in IMr

m and have norm no bigger than ‖f‖∞. On the other hand,

(E − 1) An =
n∑

j=1

Ej/n −
n−1∑

j=0

Ej/n = (En − 1)/n
n→∞

−−−−−→ 0 in norm ,

hence all limit points g of (Anf) are also in ker(E − 1).

A simpler argument shows that, with R reflection across t = 1/2, i.e.,

(Rf)(t) = f(1 − t) ,

there exists, for every f ∈ IMr
m ∩ ker(E − 1), a g ∈ IMr

m ∩ ker(E − 1), viz.

g = (f + (−)mRf)/2 ,

with ‖g‖∞ ≤ ‖f‖∞ and (−)mRg = g. Consequently,

inf
{
‖f‖∞ : f ∈ IMr

m

}
= inf

{
‖g‖∞ : g ∈ IMr

m and Eg = g and (−)mRg = g
}

= inf
q∈Qr

m

‖Bm − q‖∞,[0..1/2]

with

Qr
m :=

{
q ∈ IPm : (−)mRq = q ; Djq(0) = Djq(1) , j = 0, . . . , r

}
.
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The finite dimensionality of Qr
m ensures that the infimum is attained.

In order to construct an element of IMr
m of minimal norm, it is convenient and natural

to use the Bernoulli polynomials (Bn) since (see Appendix ) (Bn)
m−1
0 provides a basis for

IPm with the following properties:

B0 = 1 ; DBn = nBn−1 ; RBn = (−)nBn ; Bn(0) = Bn(1) for n 6= 1 ,

hence
DjBn(0) = DjBn(1) for n − j 6= 1 .

It follows that

Qr
m = span

{
Bj : j = 0 or r + 1 < j < m ; j ≡ m(mod2)

}
.

Explicitly, with
n := ⌊(m − r)/2⌋ ,

every q ∈ Qr
m is of the form

q =

n−1∑

j=1

am−2jBm−2j + a0

with a0 = 0 in case m is odd.

Lemma. Let n := ⌊(m − r)/2⌋ ≥ 2. For even m, every q ∈ Qr
m\{0} is even around 1/2

and has ≤ n − 1 zeros in [0 . . 1/2], hence ≤ 2(n − 1) zeros in [0 . . 1]. For odd m, every
q ∈ Qr

m\{0} is odd around 1/2, vanishes at 0 and at 1/2 and has ≤ n− 2 zeros in (0, 1/2),
hence ≤ 2n − 1 zeros in [0 . . 1].

Proof: by induction on m − 2n. Let m be even, q ∈ Qr
m\{0} with p zeros in

[0 . .1/2]. Then q has 2p zeros in [0 . .1]. If m−2n = 0, then q has degree ≤ m−2 = 2n−2,
hence p ≤ n − 1. Otherwise, m − 2n ≥ 2 and Dq ∈ Qr−1

m−1\{0}, – we assume that p > 0, –
and Dq has 2p−1 zeros in [0 . .1] in addition to its zeros at 0 and at 1, therefore p ≤ n−1,
by induction hypothesis.

If, on the other hand, m is odd and q ∈ Qr
m\{0} has p zeros in (0, 1/2), then q has

2p + 3 zeros in [0 . . 1]. If m − 2n = 1, then q is of degree ≤ m − 2 = 2n − 1 and therefore
p ≤ n− 2. Otherwise, m− 2n ≥ 3, hence Dq ∈ Qr−1

m−1\{0} and has at least 2p + 2 zeros in
[0 . . 1], hence p ≤ n − 2 by induction hypothesis.

Theorem. If m is even, then Qr
m is a Chebyshev set on [0 . .1/2], hence Bm−Qr

m contains
a unique element Bm,r of smallest uniform norm on [0 . . 1/2], characterized by the fact
that for some ε ∈ {−1, 1} and for some 0 = t1 < · · · < tn+1 = 1/2,

εBm,r(ti) = (−)i‖Bm,r‖∞,[0..1/2] .

Proof: Since dim Qr
m = n := ⌊(m − r)/2⌋, the lemma ensures that Qr

m satisfies
Haar’s condition on [0 . . 1/2]. Standard arguments (see ) therefore give existence and
uniqueness of a best approximation to Bm in Qr

m, characterized by alternation of its error
Bm,r on some n + 1 points in [0 . . 1/2]. But since DBm,r is in Qr−1

m+1\{0} and vanishes at
each of these points, only n − 1 of these can lie in (0 . . 1/2), by Lemma above.
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Note that Qm−2n−1
m = Qm−2n

m , hence Bm,m−2n−1 = Bm,m−2n. But, while the 1–
periodic extension Bm,m−2n of Bm,m−2n to all of IR provides the unique element of
smallest uniform norm in IMm−2n

m , no such uniqueness is known for Bm,m−2n−1 = Bm,m−2n

as an element of IMm,m−2n−1.

Corollary. With Bm,m−2n the 1–periodic extension of B
m,m−2n [0..1]

to all of IR, f∗ :=

Bm,m−2n is the unique element of smallest uniform norm in IMm−2n
m .

Proof: By the theorem, there is an ε ∈ {−1, 1} so that

εf∗(ti) = (−)i‖f∗‖∞, all i ∈ ZZ ,

with 0 = t1 < · · · < tn+1 = 1/2, and tn+1+i = 1 − tn+1−i, i = 1, . . . , n − 1, and, finally,
ti+2nk = ti + k, all i, k ∈ ZZ. Hence, if f ∈ IMm−2n

m and ‖f‖∞ ≤ ‖f∗‖∞, then

s := f∗ − f

is an element of IPm,ZZ ∩ C(m−2n)(IR) satisfying

εs(ti) (−)i ≥ 0 for all i ∈ ZZ .

If m − 2n = 0, then, on each [k . . k + 1], s is a polynomial of degree < m with m + 1
weak sign changes, therefore identically zero; hence s = 0 and so f = f∗.

If m − 2n > 0, then s is in C(1), therefore

s(ti) = 0 ⇐⇒ ti is (at least) a double zero of s

as then ti is an extremum for both f and f∗. Hence, if we allot one such zero to the interval
(ti−1 . . ti) and the ”other” zero to the interval (ti . . ti+1) in case s(ti) = 0, then it follows
that s has at least j zeros in [ti . . ti+j ]. In particular, s has 2nk zeros in [0 . . k] counting
multiplicities. If now s 6= 0, then all of these zeros must be isolated. For, otherwise, s
would vanish identically on some interval [i . . i+1] yet not vanish identically on [i− 1 . . i],
hence the polynomial s [i−1..i] would be of nonnegative degree < m, yet would vanish 2n

times on [i − 1 . . i] in addition to its (m − 2n + 1)–fold zero at i (due to the fact that
s ∈ C(m−2n)), making it vanish m times, an impossibility. It follows that s is a spline of
order m on [0 . . k] with 2nk isolated zeros (counting multiplicities), yet has only k − 1
knots, each of multiplicity m− (m− 2n + 1) = 2n− 1, an impossibility for large k by I.7.(
). This proves s = 0 and so f = f∗.

The development for odd m proceeds along similar lines. We merely state the results.

Theorem. If m is odd and n := ⌊(m − r)/2⌋, then Qr
m = {vw : w ∈ Q}, with

v(t) := t(t − 1/2) and Q a linear space of polynomials of dimension n − 1 which satisfies
Haar’s condition on (0 . .1/2). Since also Bm vanishes at 0 and at 1/2, Bm−Qr

m therefore
contains exactly one element Bm,r of smallest uniform norm on [0 . .1/2], and this element
is characterized by the fact that, for some ε ∈ {−1, 1} and some 0 < t1 < · · · < tn < 1/2,

εBm,r(ti) = (−)i‖Bm,r‖∞,[0..1/2] .
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Further, Bm,m−2n−1 = Bm,m−2n, and the 1–periodic extension Bm,m−2n of B
m,m−2n [0..1]

to all of IR is the unique element of minimal uniform norm in IMm−2n
m .

Schoenberg and Ziegler [SZ] call Bm,r a BT or Bernoulli–Chebyshev polynomial,
since Bm,−1 is given by

Bm,−1(t) = 2−2m+1Tm(2t − 1)

with Tm the m–th degree Chebyshev polynomial, while, on the other end of the scale,

Bm,m−2 = Bm − Bm(0)/2m .

The BT polynomial Bm,m−2n = Bm,m−2n−1 is the unique element of minimal max norm
on [0 . . 1] in{

p ∈ IPm+1 : Dmp = m! ; Djp(0) = Djp(1), j = 0, . . . , m − 2n
}

.

Qualitative information about Bm,r can be obtained as follows: If m is even and r =
m − 2n, then, by Theorem, Bm,r changes sign strongly on 0 = t1 < · · · < t2n+1 = 1, i.e.,

Bm,r(ti) Bm,r(ti+1) < 0 for i = 1, . . . , 2. Hence, there exist 0 < t
(1)
1 < · · · < t

(1)
2n < 1

on which DBm,r changes sign strongly. Also, if r ≥ 2, then DBm,r vanishes at 0 and at

1, therefore there exist points 0 ≤ t
(2)
1 < · · · < t

(2)
2n+1 ≤ 1 on which D2Bm changes sign

strongly. In fact we can take t
(2)
1 = 0 and t

(2)
2n+1 = 1 since otherwise D2Bm,r would have

to have more zeros in [0 . . 1] than are allowed by Lemma. In particular, as |Bm,r| must
have an extremum at t = 0, we must have

Bm,r(0) D2Bm,r(0) < 0 .

Proceeding in this way, we find that, for s = 1, . . . , r/2,

D2s−1Bm,r(0) = 0, D2s−2Bm,r(0) D2sBm,r(0) < 0

and that D2sBm,r changes sign strongly on some 0 = t
(2s)
1 < · · · < t

(2s)
2n+1 = 1. In particular,

as DrBm,r is of degree m − r = 2n, it has 2n real zeros, all simple and in (0 . . 1) and
symmetric around 1/2 since DrBm,r is even around 1/2. The Budan–Fourier Theorem
(see I.7.) then implies that, because D2nDrBm,r = DmBm,r = m! > 0, we must have

(−)jDr+jBm,r(0) > 0, Dr+jBm,r(1) > 0, j = 0, . . . , 2n,

therefore also
(−)Dr−2jBm,r(0) > 0, j = 0, . . . , r/2

and, in particular, (−)r/2Bm,r(0) > 0, confirming the conjecture (2.18) of Schoenberg and
Ziegler [SZ].

Analogous considerations show that, for odd m and r = m−2n, DrBm,r changes sign

strongly on some 0 = t
(r)
1 < · · · < t

(r)
2n+1 = 1, hence has 2n zeros in [0 . . 1], necessarily all

simple since DrBm,r has degree 2n. Hence, again

(−)jDr+jBm,r(0) > 0, Dr+jBm,r(1) > 0, j = 0, . . . , 2n ,

and, finally

(−)jDr−2jBm,r(0) > 0, Dr−2j−1Bm,r(0) = 0, j = 0, . . . , (r − 1)/2

and so, with t1 the leftmost extremum of Bm,r in [0 . . 1], we have (−)(r−1)/2 Bm,r(t1) > 0,
confirming conjecture (2.18) of Schoenberg and Ziegler [SZ].
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Cardinal perfect splines of least IL∞–norm are treated in Cavaretta [C] in close
imitation of Schoenberg and Ziegler’s [SZ] treatment of the cardinal monosplines of least
IL∞–norm just discussed. The problem now is to minimize ‖ · ‖∞ over

IPrm :=
{
f ∈ IPm+1,ZZ ∩ C(r)(IR) : Dmf = (−)km! on (k . . k + 1), all k

for −1 ≤ r ≤ m− 1. This set is invariant under −E rather than the unit shift E, hence it
is sufficient to minimize ‖ · ‖∞ over

IPrm ∩ ker(E + 1) ∩ ker
(
(−)mR − 1

)
,

– here R is again reflection across t = 1/2. The role played earlier by the Bernoulli
polynomials is now taken over by the Euler polynomial (En), since (En)

m−1
0 provides a

basis for IPm which satisfies (see Appendix )

E0 = 1; DEn = En−1; REn = (−)nEn; En(0) = −En(1) for n 6= 0 ,

hence
DjEn(0) = −DjEn(1) for n − j 6= 0 .

For given f defined (at least) on [0 . .1), let f denote the function defined on all of IR which
satisfies

f(t) = f(t) for 0 ≤ t < 1

f(t + 1) = −f(t) for all t ∈ IR .

In particular, Em is an Euler spline normalized to have ”leading” coefficient 1. Then the
facts are as follows:

We have
inf

f∈IPr
m

‖f‖∞ = min
q∈Qr

m

‖Em − q‖∞,[0..1/2]

with

Qr
m : =

{
q ∈ IPm : (−)mRq = q; Djq(0) = −Djq(1) for j = 0, . . . , r

}

= span
{

Ej : r < j < m; j ≡ m (mod 2)
}

.

Let
n := ⌊(m − r − 1)/2⌋ .

For even m, Qr
m = {vw : w ∈ Q}, with v(t) = t and Q a linear space of polynomials of

dimension n satisfying Haar’s condition on (0 . . 1/2]. Hence, Em − Qr
m contains exactly

one element Em,r of smallest uniform norm on [0 . . 1/2], and this element is characterized
by the fact that, for some ε ∈ {−1, 1} and some 0 < t1 < · · · < tn+1 = 1/2,

εEm,r(ti) = (−)i‖Em,r‖∞,[0..1/2] .
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For odd m, Qr
m = {vw : w ∈ Q}, with v(t) = t − 1/2 and Q a linear space of

polynomials of dimension n satisfying Haar’s condition on [0 . . 1/2). Hence, Em − Qr
m

contains exactly one element Em,r of smallest uniform norm on [0 . .1/2], and this element
is characterized by the fact that, for some ε ∈ {−1, 1} and some 0 = t1 < · · · < tn+1 < 1/2,

εEm,r(ti) = (−)i‖Em,r‖∞,[0..1/2] .

Cavaretta [loc.cit] calls Em,r an Euler-Chebyshev, or ET, polynomial since

Em,−1(t) = 2−2m+1Tm(2t − 1) and Em,m−1 = Em .

Further, for r = m − 2n − 1, Em,r = Em,r−1, and Em,r is the unique element of smallest
uniform norm in IPrm. Also, Em,r is the unique element of smallest uniform norm in

{
p ∈ IPm+1 : Djp(0) = −Djp(1), j = 0, . . . , r

}
.

The qualitative behaviour of Em,r could easily be elaborated further.
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