divided differences: history

Newton: Newton form (see Fraser27, KowalewskiA17))

Ampere26: fonctions interpolaires

Cauchy40: refinement formula for first-order dvl’s

Morgan42: first use of ‘divided difference’?

Genocchi69: Genocchi-Hermite formula

Frobenius71: representation by contour integral; definition and convergence analysis of Newton form with infinitely many centers, hence Hermite interpolation as a very special case.

Hermite78: Hermite interpolation, Genocchi-Hermite formula.

Schwarz81: mean-value formula

Stieltjes82: limit of \(\Delta(t_0, \ldots, t_n)f \) as \(t_0, \ldots, t_n \to a. \)

Hopf26: characterization of functions whose \(n \)-th divided differences are bounded by some constant (e.g., above, below, above and below); also \(\Delta(t_0, \ldots, t_n) - \Delta(s_0, \ldots, s_n) = \sum_{j=0}^{n}(t_j - s_j)\Delta(t_0, \ldots, t_j, s_j, \ldots, s_n); \) etc.

Popoviciu33: Leibniz rule; general refinement formula; \(n \)-convexity.

Chakalov38: explicit formula for \(\Delta(t_0, \ldots, t_n) \) using the partial fraction expansion of \(1/\prod_{j=0}^{n}(\cdot - t_j). \)

Opitz64: \((\Delta(t_i, \ldots, t_j)f : i, j = 1, \ldots, n) = f(\Delta(t_i, \ldots, t_j)(i) : i, j = 1, \ldots, n). \)

24nov04