Other B-spline recurrences

In Chakalov38a, Chakalov derives the following recurrence relation:

$$
D \frac{M_{0, n}}{\left(\tau_{n}-\cdot\right)^{n-1}}=n \frac{M_{0, n-1}}{\left(\tau_{n}-\cdot\right)^{n}}
$$

with

$$
M_{i, j}(x):=(j-i) \Delta\left(\tau_{i}, \ldots, \tau_{j}\right)(\cdot-x)_{+}^{j-i-1}
$$

See also (3.4.6) in BojanovHakopianSahakian93.
As is pointed out in BoorPinkus03, differentiation of Chakalov's recurrence gives the pretty formula

$$
(n-1) M_{0, n}+\left(\tau_{n}-\cdot\right) D M_{0, n}=n M_{0, n-1}
$$

which occurs already in Morsche78 and is used heavily in MeinardusMorscheWalz95a and is, as shown in BoorPinkus03, equivalent to the standard B-spline recurrence relation. Note that the pretty formula is equivalent to Chakalov's recurrence, and is an immediate consequence of the following special case

$$
\Delta(t, s)(\cdot-x) f=(t-x) \Delta(t, s) f+\Delta(s) f
$$

of the Leibniz formula, valid for any scalars t and x, any sequence s, and any smooth enough f, by choosing $f=(\cdot-x)_{+}^{n-2}=-D_{x}(\cdot-x)_{+}^{n-1} /(n-1)$, $s=\left(\tau_{0}, \ldots, \tau_{n-1}\right)$, and $t=\tau_{n}$. Since the divided difference is a symmetric function of its sites, the sequence τ here is entirely arbitrary. Hence, the pretty formula holds for an arbitrary τ_{n}, but with the warning that, if τ is not nondecreassing, then

$$
\frac{\tau_{n}-\tau_{0}}{\max \tau-\min \tau} M_{0, n}
$$

is the B-spline with knots $\tau_{0}, \ldots, \tau_{n}$ that integrates to 1 .

